cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054217 Primes p with property that p concatenated with its emirp p' (prime reversal) forms a palindromic prime of the form 'primemirp' (rightmost digit of p and leftmost digit of p' are blended together - p and p' palindromic allowed).

Original entry on oeis.org

2, 3, 5, 7, 13, 31, 37, 79, 113, 179, 181, 199, 353, 727, 787, 907, 937, 967, 983, 1153, 1193, 1201, 1409, 1583, 1597, 1657, 1831, 1879, 3083, 3089, 3319, 3343, 3391, 3541, 3643, 3853, 7057, 7177, 7507, 7681, 7867, 7949, 9103, 9127, 9173, 9209, 9439, 9547, 9601
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2000

Keywords

Comments

Original idea from G. L. Honaker, Jr..

Examples

			E.g., prime 113 has emirp 311 and 11311 is a palindromic prime, so 113 is a term.
		

Crossrefs

Programs

  • Mathematica
    empQ[n_]:=Module[{idn=IntegerDigits[n],rev},rev=Reverse[idn];And@@PrimeQ[ {FromDigits[ rev],FromDigits[Join[Most[idn],rev]]}]]; Select[Prime[ Range[ 1200]],empQ] (* Harvey P. Dale, Mar 26 2013 *)
  • Python
    from sympy import isprime
    def ok(n):
        if not isprime(n): return False
        s = str(n); srev = s[::-1]
        return isprime(int(srev)) and isprime(int(s[:-1] + srev))
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Nov 17 2023

Extensions

Corrected (a(30)=3089 inserted) by Harvey P. Dale, Mar 26 2013