A090665 Triangle read by rows: T(n,k) = number of preferential arrangements of n things where the first object has rank k.
1, 2, 1, 6, 5, 2, 26, 25, 18, 6, 150, 149, 134, 84, 24, 1082, 1081, 1050, 870, 480, 120, 9366, 9365, 9302, 8700, 6600, 3240, 720, 94586, 94585, 94458, 92526, 82320, 57120, 25200, 5040, 1091670, 1091669, 1091414, 1085364, 1038744, 871920, 554400, 221760, 40320
Offset: 1
Examples
Triangle starts: 01: 1; 02: 2, 1; 03: 6, 5, 2; 04: 26, 25, 18, 6; 05: 150, 149, 134, 84, 24; 06: 1082, 1081, 1050, 870, 480, 120; 07: 9366, 9365, 9302, 8700, 6600, 3240, 720; 08: 94586, 94585, 94458, 92526, 82320, 57120, 25200, 5040; 09: 1091670, 1091669, 1091414, 1085364, 1038744, 871920, 554400, 221760, 40320; 10: 14174522, 14174521, 14174010, 14155350, 13950720, 12930120, 10190880, 5957280, 2177280, 362880; ...
Programs
-
Mathematica
T = {n, k} |-> 2*Sum[i!*StirlingS2[n-1, i], {i, k, n-1}] + (k-1)i!*StirlingS2[n-1, k-1] (* Vincent Jackson, May 01 2023 *)
Formula
From Vincent Jackson, May 01 2023: (Start)
T(n, k) = 2*(Sum_{i=k..n-1} i!*StirlingS2(n-1, i)) + (k-1)!*StirlingS2(n-1,k-1).
T(n, k) = 2*A084416(n-1,k) + (k-1)!*StirlingS2(n-1,k-1).
Sum_{k=1..n} k * T(n,k) = A083410(n). - Alois P. Heinz, Feb 20 2025
Extensions
Corrected by Alois P. Heinz, Dec 08 2014
Name clarified by Vincent Jackson, May 01 2023
Comments