cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A083410 a(n) = A083385(n)/n.

Original entry on oeis.org

1, 4, 22, 154, 1306, 12994, 148282, 1908274, 27333706, 431220034, 7428550042, 138737478994, 2792050329706, 60231133487074, 1386484468239802, 33921605427779314, 878976357571495306, 24046780495646314114, 692622345890928153562, 20950628198687114521234, 663992311200423614606506
Offset: 1

Views

Author

N. J. A. Sloane, Jun 08 2003

Keywords

Comments

From Michael Somos, Mar 04 2004: (Start)
Stirling transform of A052849(n+1)=[4,12,48,240,...] is 4*a(n)=[4,16,88,616,...].
Stirling transform of A001710(n+1)=[1,3,12,160,...] is a(n)=[1,4,22,154,...].
Stirling transform of A001563(n+1)=[4,18,96,600,...] is a(n+1)=[4,22,154,...]. (End)

Crossrefs

A005649(n)=2*a(n), if n>0.
Pairwise sums of A091346.
Cf. A090665.

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, (m+1)!, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0)/2:
    seq(a(n), n=1..23);  # Alois P. Heinz, Feb 14 2025
  • Mathematica
    a[n_] := (-1)^n (PolyLog[-n - 1, 2] - PolyLog[-n, 2])/8;
    Array[a, 21] (* Jean-François Alcover, Sep 10 2018, from A005649 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst((1/(1-y)^2-1)/2,y,exp(x+x*O(x^n))-1),n))

Formula

E.g.f.: (1/(2-exp(x))^2-1)/2. - Michael Somos, Mar 04 2004
G.f.: 1/Q(0), where Q(k) = 1 - x*(3*k+4) - 2*x^2*(k+1)*(k+3)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
a(n) ~ n! * n / (8 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n) = Sum_{k=1..n} k * A090665(n,k). - Alois P. Heinz, Feb 20 2025

A054255 Triangle T(n,k) (n >= 1, 0<=k<=n) giving number of preferential arrangements of n things beginning with k (transposed, then read by rows).

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 6, 18, 25, 26, 24, 84, 134, 149, 150, 120, 480, 870, 1050, 1081, 1082, 720, 3240, 6600, 8700, 9302, 9365, 9366, 5040, 25200, 57120, 82320, 92526, 94458, 94585, 94586, 40320, 221760, 554400, 871920, 1038744, 1085364, 1091414, 1091669, 1091670
Offset: 1

Views

Author

Eugene McDonnell (Eemcd(AT)aol.com), May 05 2000

Keywords

Comments

Can be generated from Stirling_2 triangle A008277 (cf. A028246, which is intermediate between the two arrays).

Examples

			   1;
   1,  2;
   2,  5,   6;
   6, 18,  25,  26;
  24, 84, 134, 149, 150;
  ...
		

Crossrefs

Row sums give A000670. First 3 rows are A000629, A002050 = A000629 - 1, 2*A002051 = (A000629 - 2^m) (m >= 0).
Cf. A090665 (triangle with rows reversed).

Extensions

More terms from James Sellers, May 05 2000
Showing 1-2 of 2 results.