A054271 Difference between prime(n)^2 and the previous prime.
1, 2, 2, 2, 8, 2, 6, 2, 6, 2, 8, 2, 12, 2, 2, 6, 12, 2, 6, 2, 6, 12, 6, 2, 6, 8, 2, 2, 14, 6, 2, 2, 12, 2, 8, 14, 18, 8, 6, 2, 12, 12, 2, 6, 6, 20, 2, 2, 8, 8, 2, 2, 8, 12, 2, 6, 8, 8, 12, 20, 12, 2, 20, 18, 2, 6, 14, 2, 8, 12, 8, 2, 6, 6, 12, 6, 18, 30, 12, 12, 18, 2, 8, 12, 24, 2, 2, 6, 14, 6
Offset: 1
Examples
From _Zak Seidov_, Feb 20 2012: (Start) n=4 and prime(4)^2=49, preceded by prime(15)=47, so a(4)=49-47=2; n=97 and prime(97)^2=509^2=259081, preceded by prime(22765)=259033, so a(97)=259081-259033=48. (End)
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
f[n_]:=Module[{n2=n^2},n2-NextPrime[n2,-1]]; f/@Prime[Range[90]] (* Harvey P. Dale, Oct 19 2011 *)
-
PARI
a(n) = my(p=prime(n)); p^2 - precprime(p^2); \\ Michel Marcus, Feb 27 2023
Formula
a(n) = prime(n)^2 - precprime(prime(n)^2), where precprime(x) is the largest prime less than x. [Corrected by Jean-Christophe Hervé, Oct 21 2013]
Comments