A054329 One quarter of fourth unsigned column of Lanczos' triangle A053125.
1, 20, 224, 1920, 14080, 93184, 573440, 3342336, 18677760, 100925440, 530579456, 2726297600, 13740539904, 68115496960, 332859965440, 1606317768704, 7666516623360, 36232344109056, 169737107537920, 788899592929280
Offset: 0
References
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (16,-96,256,-256).
Programs
-
GAP
List([0..30], n-> 4^(n-1)*Binomial(2*n+4,3)); # G. C. Greubel, Jul 22 2019
-
Magma
[4^(n-1)*Binomial(2*n+4,3): n in [0..30]]; // G. C. Greubel, Jul 22 2019
-
Mathematica
Table[4^(n-1)*Binomial[2*n+4, 3], {n,0,30}] (* G. C. Greubel, Jul 22 2019 *)
-
PARI
vector(30, n, n--; 4^(n-1)*binomial(2*n+4,3)) \\ G. C. Greubel, Jul 22 2019
-
Sage
[4^(n-1)*binomial(2*n+4,3) for n in (0..30)] # G. C. Greubel, Jul 22 2019
Formula
G.f.: (1+4*x)/(1-4*x)^4.
E.g.f.: (3 + 48*x + 120*x^2 + 64*x^3)*exp(4*x)/3. - G. C. Greubel, Jul 22 2019