A054328 Tenth unsigned column of Lanczos triangle A053125 (decreasing powers).
10, 880, 32032, 732160, 12446720, 171991040, 2037432320, 21422145536, 204770508800, 1810602393600, 15002134118400, 117645194035200, 879986051383296, 6317848574033920, 43758103916707840, 293602761763717120
Offset: 0
References
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (40, -720, 7680, -53760, 258048, -860160, 1966080, -2949120, 2621440, -1048576).
Programs
-
GAP
List([0..20], n-> 4^n*Binomial(2*n+10,9)); # G. C. Greubel, Jul 22 2019
-
Magma
[4^n*Binomial(2*n+10,9): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Mathematica
CoefficientList[Series[2(1+40x+80x^2)(5+40x+16x^2)/(1-4x)^10,{x,0,20}],x] (* Harvey P. Dale, Feb 28 2011 *) Table[4^n*Binomial[2*n+10, 9], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
-
PARI
vector(20, n, n--; 4^n*binomial(2*n+10,9)) \\ G. C. Greubel, Jul 22 2019
-
Sage
[4^n*binomial(2*n+10,9) for n in (0..20)] # G. C. Greubel, Jul 22 2019