A054336 A convolution triangle of numbers based on A001405 (central binomial coefficients).
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 6, 10, 9, 4, 1, 10, 22, 22, 14, 5, 1, 20, 44, 54, 40, 20, 6, 1, 35, 93, 123, 109, 65, 27, 7, 1, 70, 186, 281, 276, 195, 98, 35, 8, 1, 126, 386, 618, 682, 541, 321, 140, 44, 9, 1, 252, 772, 1362, 1624, 1440, 966, 497, 192, 54, 10, 1
Offset: 0
Examples
Fourth row polynomial (n=3): p(3,x)= 3 + 5*x + 3*x^2 + x^3. From _Paul Barry_, Oct 21 2010: (Start) Triangle begins 1; 1, 1; 2, 2, 1; 3, 5, 3, 1; 6, 10, 9, 4, 1; 10, 22, 22, 14, 5, 1; 20, 44, 54, 40, 20, 6, 1; 35, 93, 123, 109, 65, 27, 7, 1; Production matrix is 1, 1; 1, 1, 1; -1, 1, 1, 1; 1, -1, 1, 1, 1; -1, 1, -1, 1, 1, 1; 1, -1, 1, -1, 1, 1, 1; -1, 1, -1, 1, -1, 1, 1, 1; 1, -1, 1, -1, 1, -1, 1, 1, 1; -1, 1, -1, 1, -1, 1, -1, 1, 1, 1; (End)
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
GAP
A053121:= function(n,k) if ((n-k+1) mod 2)=0 then return 0; else return (k+1)*Binomial(n+1, Int((n-k)/2))/(n+1); fi; end; T:= function(n,k) return Sum([k..n], j-> Binomial(j,k)*A053121(n,j)); end; Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 21 2019
-
Magma
A053121:= func< n,k | ((n-k+1) mod 2) eq 0 select 0 else (k+1)*Binomial(n+1, Floor((n-k)/2))/(n+1) >; T:= func< n,k | (&+[Binomial(j,k)*A053121(n,j): j in [k..n]]) >; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 21 2019
-
Mathematica
c[n_, j_] /; n < j || OddQ[n - j] = 0; c[n_, j_] = (j + 1) Binomial[n + 1, (n - j)/2]/(n + 1); t[n_, k_] := Sum[c[n, j]*Binomial[j, k], {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[;; 66]] (* Jean-François Alcover, Jul 13 2011, after Philippe Deléham *)
-
PARI
A053121(n,k) = if((n-k+1)%2==0, 0, (k+1)*binomial(n+1, (n-k)\2)/(n+1) ); T(n,k) = sum(j=k,n, A053121(n,j)*binomial(j,k)); for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 21 2019
-
Sage
def A053121(n, k): if (n-k+1) % 2==0: return 0 else: return (k+1)*binomial(n+1, ((n-k)//2))/(n+1) def T(n,k): return sum(binomial(j,k)*A053121(n,j) for j in (k..n)) [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 21 2019
Formula
G.f. for column m: cbi(x)*(x*cbi(x))^m, with cbi(x) := (1+x*c(x^2))/sqrt(1-4*x^2) = 1/(1-x-x^2*c(x^2)), where c(x) is the g.f. for Catalan numbers A000108.
T(n,k) = Sum_{j>=0} A053121(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
T(n,k) = T(n-1,k-1) + T(n-1,l) + Sum_{j>=0} T(n-1,k+1+j)*(-1)^j. - Philippe Deléham, Feb 23 2012
Comments