cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054336 A convolution triangle of numbers based on A001405 (central binomial coefficients).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 6, 10, 9, 4, 1, 10, 22, 22, 14, 5, 1, 20, 44, 54, 40, 20, 6, 1, 35, 93, 123, 109, 65, 27, 7, 1, 70, 186, 281, 276, 195, 98, 35, 8, 1, 126, 386, 618, 682, 541, 321, 140, 44, 9, 1, 252, 772, 1362, 1624, 1440, 966, 497, 192, 54, 10, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

T(n,k) is the number of 2-Motzkin paths (i.e., Motzkin paths with blue and red level steps) with no level steps at positive height and having k blue level steps. Example: T(4,2)=9 because, denoting U=(1,1), D=(1,-1), B=blue (1,0), R=red (1,0), we have BBRR, BRBR, BRRB, RBBR, RBRB, RRBB, BBUD, BUDB, and UDBB. - Emeric Deutsch, Jun 07 2011
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(1-(1+x)*z-z^2*c(z^2)), with c(x) the g.f. for Catalan numbers A000108.
Column sequences: A001405, A045621.
Riordan array (f(x), x*f(x)), f(x) the g.f. of A001405. - Philippe Deléham, Dec 08 2009
From Paul Barry, Oct 21 2010: (Start)
Riordan array ((sqrt(1+2x) - sqrt(1-2x))/(2x*sqrt(1-2x)), (sqrt(1+2x)-sqrt(1-2x))/(2*sqrt(1-2x))),
inverse of Riordan array ((1+x)/(1+2x+2x^2), x(1+x)/(1+2x+2x^2)) (A181472). (End)

Examples

			Fourth row polynomial (n=3): p(3,x)= 3 + 5*x + 3*x^2 + x^3.
From _Paul Barry_, Oct 21 2010: (Start)
Triangle begins
   1;
   1,  1;
   2,  2,   1;
   3,  5,   3,   1;
   6, 10,   9,   4,  1;
  10, 22,  22,  14,  5,  1;
  20, 44,  54,  40, 20,  6, 1;
  35, 93, 123, 109, 65, 27, 7, 1;
Production matrix is
   1,  1;
   1,  1,  1;
  -1,  1,  1,  1;
   1, -1,  1,  1,  1;
  -1,  1, -1,  1,  1,  1;
   1, -1,  1, -1,  1,  1,  1;
  -1,  1, -1,  1, -1,  1,  1, 1;
   1, -1,  1, -1,  1, -1,  1, 1, 1;
  -1,  1, -1,  1, -1,  1, -1, 1, 1, 1; (End)
		

Crossrefs

Row sums: A054341.

Programs

  • GAP
    A053121:= function(n,k)
        if ((n-k+1) mod 2)=0 then return 0;
        else return (k+1)*Binomial(n+1, Int((n-k)/2))/(n+1);
        fi;
      end;
    T:= function(n,k)
        return Sum([k..n], j-> Binomial(j,k)*A053121(n,j));
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 21 2019
  • Magma
    A053121:= func< n,k | ((n-k+1) mod 2) eq 0 select 0 else (k+1)*Binomial(n+1, Floor((n-k)/2))/(n+1) >;
    T:= func< n,k | (&+[Binomial(j,k)*A053121(n,j): j in [k..n]]) >;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 21 2019
    
  • Mathematica
    c[n_, j_] /; n < j || OddQ[n - j] = 0; c[n_, j_] = (j + 1) Binomial[n + 1, (n - j)/2]/(n + 1); t[n_, k_] := Sum[c[n, j]*Binomial[j, k], {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[;; 66]] (* Jean-François Alcover, Jul 13 2011, after Philippe Deléham *)
  • PARI
    A053121(n,k) = if((n-k+1)%2==0, 0, (k+1)*binomial(n+1, (n-k)\2)/(n+1) );
    T(n,k) = sum(j=k,n, A053121(n,j)*binomial(j,k));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 21 2019
    
  • Sage
    def A053121(n, k):
        if (n-k+1) % 2==0: return 0
        else: return (k+1)*binomial(n+1, ((n-k)//2))/(n+1)
    def T(n,k): return sum(binomial(j,k)*A053121(n,j) for j in (k..n))
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 21 2019
    

Formula

G.f. for column m: cbi(x)*(x*cbi(x))^m, with cbi(x) := (1+x*c(x^2))/sqrt(1-4*x^2) = 1/(1-x-x^2*c(x^2)), where c(x) is the g.f. for Catalan numbers A000108.
T(n,k) = Sum_{j>=0} A053121(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
T(n,k) = T(n-1,k-1) + T(n-1,l) + Sum_{j>=0} T(n-1,k+1+j)*(-1)^j. - Philippe Deléham, Feb 23 2012