A054341 Row sums of triangle A054336 (central binomial convolutions).
1, 2, 5, 12, 30, 74, 185, 460, 1150, 2868, 7170, 17904, 44760, 111834, 279585, 698748, 1746870, 4366460, 10916150, 27287944, 68219860, 170541252, 426353130, 1065853432, 2664633580, 6661479944, 16653699860, 41633878200, 104084695500, 260210401530, 650526003825
Offset: 0
Examples
a(4) = 30, the upper left term of M^4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2513 (first 201 terms from Vincenzo Librandi)
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Isaac DeJager, Madeleine Naquin, Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
Programs
-
Maple
b:= proc(x, y) option remember; `if`(x=0, 1, b(x-1, 0)+`if`(y>0, b(x-1, y-1), 0)+b(x-1, y+1)) end: a:= n-> b(n, 0): seq(a(n), n=0..31); # Alois P. Heinz, Jan 23 2024
-
Mathematica
CoefficientList[Series[2/(1-4*x+Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
Formula
a(n) = Sum_{m=0..n} A054336(n, m).
G.f.: 1/(1-2*x-x^2*c(x^2)), where c(x) = g.f. for Catalan numbers A000108.
From_Paul Barry_, Sep 14 2005: (Start)
G.f.: c(x^2)/(1-2*x*c(x^2));
a(n) = Sum_{k=0..n} binomial(n,(n-k)/2)*(1 + (-1)^(n+k))*2^k*(k+1)/(n+k+2). (End)
G.f.: 2/(1-4*x+sqrt(1-4*x^2)). - Ira M. Gessel, Oct 27 2013
a(n) = A126075(n,0). - Philippe Deléham, Nov 24 2009
a(n) = Sum_{k=0..n} A053121(n,k)*2^k. - Philippe Deléham, Nov 28 2009
From Gary W. Adamson, Sep 07 2011: (Start)
a(n) is the upper left term of M^n, M is an infinite square production matrix as follows:
2, 1, 0, 0, 0, ...
1, 0, 2, 0, 0, ...
0, 1, 0, 1, 0, ...
0, 0, 1, 0, 1, ...
0, 0, 0, 1, 0, ...
... (End)
Conjecture: 2*(n+1)*a(n) +5*(-n-1)*a(n-1) +8*(-n+2)*a(n-2) +20*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ 3 * 5^n / 2^(n+2). - Vaclav Kotesovec, Feb 13 2014
Comments