A054347 Partial sums of A000201.
0, 1, 4, 8, 14, 22, 31, 42, 54, 68, 84, 101, 120, 141, 163, 187, 212, 239, 268, 298, 330, 363, 398, 435, 473, 513, 555, 598, 643, 689, 737, 787, 838, 891, 946, 1002, 1060, 1119, 1180, 1243, 1307, 1373, 1440, 1509, 1580, 1652, 1726, 1802, 1879
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- M. Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, 118 (2011), 497-507.
Crossrefs
Cf. A000201.
Programs
-
Mathematica
Accumulate[Table[Floor[GoldenRatio n], {n, 0, 30}]] (* Birkas Gyorgy, May 06 2011 *)
-
PARI
for(n=0,50, print1(sum(k=0,n, floor(k*(1+sqrt(5))/2)), ", ")) \\ G. C. Greubel, Oct 06 2017
-
Python
from math import isqrt from itertools import count, islice, accumulate def A054347_gen(): # generator of terms return accumulate(n+isqrt(5*n**2)>>1 for n in count(0)) A054347_list = list(islice(A054347_gen(),30)) # Chai Wah Wu, Aug 29 2022
Formula
a(n) = floor(n*(n+1)/2*phi - n/2) + 0 or +1. - Benoit Cloitre, Oct 03 2003
a(n) = floor(n*(n+1)/2*phi - n/2) + 0, +1, or -1 (n = 7920, 18762, 18851, ...), or +2 (n = 12815, 15841, 30358, 30382, ...) if n < 2000000. - Birkas Gyorgy, May 06 2011
Comments