cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A156253 Least k such that A054353(k) >= n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 23, 24, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 41, 42, 42, 43, 44, 44, 45, 45, 46, 47, 47, 48, 49, 50
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2009

Keywords

Comments

a(n)=1 plus the number of symbol changes in the first n terms of A000002. - Jean-Marc Fedou and Gabriele Fici, Mar 18 2010
From N. J. A. Sloane, Nov 12 2018: (Start)
This seems to be A001462 rewritten so the run lengths are given by A000002. The companion sequence, A000002 rewritten so the run lengths are given by A001462, is A321020.
Note that Kolakoski's sequence A000002 and Golomb's sequence A001462 have very similar definitions, although the asymptotic behavior of A001462 is well-understood, while that of A000002 is a mystery. The asymptotic behavior of the two hybrids A156253 and A321020 might be worth investigating. (End)
To expand upon N. J. A. Sloane's comments, it's worth noting that Golomb's sequence has a formula from Colin Mallows: g(n) = g(n-g(g(n-1))) + 1, which closely resembles a(n) = a(n-gcd(a(a(n-1)),2)) + 1. - Jon Maiga, May 16 2023

Crossrefs

Programs

  • Mathematica
    a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1 + Mod[n - 1, 2]}], {n, 3, 80}, {i, 1, a2[[n]]}]; a3 = Accumulate[a2]; a[1] = 1; a[n_] := a[n] = For[k = a[n - 1], True, k++, If[a3[[k]] >= n, Return[k]]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 18 2013 *)
    a[1] = 1;
    a[n_]:=a[n]=a[n-GCD[a[a[n - 1]], 2]]+1
    Array[a, 100] (* Jon Maiga, May 16 2023 *)

Formula

Conjecture: a(n) should be asymptotic to 2n/3.
Length of n-th run of the sequence = A000002(n). - Benoit Cloitre, Feb 19 2009
Conjecture: a(n) = (a(a(n-1)) mod 2) + a(n-2) + 1. - Jon Maiga, Dec 09 2021
a(n) = a(n-gcd(a(a(n-1)), 2)) + 1. - Jon Maiga, May 16 2023

A156242 Bisection of A054353.

Original entry on oeis.org

3, 6, 9, 12, 15, 19, 21, 24, 27, 30, 33, 36, 39, 42, 45, 47, 50, 54, 57, 60, 63, 66, 69, 72, 75, 77, 81, 84, 87, 90, 93, 96, 100, 102, 105, 108, 111, 114, 117, 120, 123, 127, 129, 132, 136, 139, 142, 145, 147, 151, 154, 156, 159, 163, 166, 169, 172, 174, 177, 181
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2009

Keywords

Comments

Positions of strict descents in the Kolakoski sequence A000002. Strict ascents are A156243. - Gus Wiseman, Mar 31 2020

Crossrefs

The version for prime gaps is A258026.
Sizes of maximal weakly increasing subsequences of A000002 are A332875.

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=Nest[kolagrow,{1},n-1];
    Join@@Position[Partition[kol[100],2,1],{2,1}] (* Gus Wiseman, Mar 31 2020 *)

Formula

a(n) = A054353(2n).
A000002(a(n))=2 and A000002(a(n)+1)=1. - Jon Perry, Sep 04 2012

A156243 Bisection of A054353.

Original entry on oeis.org

1, 5, 7, 10, 14, 17, 20, 23, 25, 29, 32, 34, 37, 41, 43, 46, 49, 52, 55, 59, 61, 64, 68, 71, 73, 76, 79, 82, 86, 88, 91, 95, 98, 101, 104, 106, 109, 113, 116, 118, 122, 125, 128, 131, 134, 137, 141, 143, 146, 149, 152, 155, 158, 161, 164, 168, 170, 173, 176, 179, 182
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2009

Keywords

Crossrefs

Partial sums of A332273.

Formula

a(n) = A054353(2n-1).
A000002(a(n))=1 and A000002(a(n)+1)=2.
n such that A078649(A054353(a(n)-1)-a(n)+2)-A054353(a(n)-1)=2. [From Benoit Cloitre, Feb 08 2009]

A157687 a(n) = n - A054353(A156351(n)).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 04 2009

Keywords

Crossrefs

Formula

a(n) = 1 iff n is in A078649, a(n) = 0 iff n is in A054353.
a(n) = n-A054353(A157684(n)+A157685(n)).
a(n) = 1 - A156728(n). - Alan Michael Gómez Calderón, Dec 19 2024

A074289 Values of A000002(n)*A054353(n) that are repeated.

Original entry on oeis.org

6, 10, 24, 34, 46, 64, 72, 82, 114, 118, 132, 142, 186, 196, 200, 222, 240, 268, 290, 298, 302, 316, 326, 344, 358, 370, 414, 436, 454, 460, 496, 518, 524, 600, 622, 640, 650, 658, 672, 696, 720, 750, 764, 782, 792, 846, 864, 878, 886, 890, 896, 914, 918
Offset: 1

Views

Author

Jon Perry, Sep 21 2002

Keywords

Comments

Values that appear in A074288 multiple times.

Examples

			The Kolakoski sequence begins 1,2,2,1,1,2,1,... and its sequence of partial sums begins 1,3,5,6,7,9,10,... Multiplying the sequences term-by-term gives 1,6,10,6,7,18,10,... Since 6 and 10 appear more than once, they are both in this sequence.
		

Crossrefs

Extensions

Extended and edited by Nathaniel Johnston, May 02 2011

A156562 a(n) = (-1)^n*Sum_{k=1..n} A054353(k)*(-1)^k.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 7, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 17, 16, 18, 18, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 27, 27, 28, 29, 30, 30, 31, 32, 32, 34, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 41, 43, 43, 44, 44, 46, 45, 48, 47, 49, 49, 51, 50, 52
Offset: 1

Views

Author

Benoit Cloitre, Feb 10 2009

Keywords

Crossrefs

A156250 Least k such that A078649(k) >= A054353(n).

Original entry on oeis.org

1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 8, 9, 9, 9, 10, 11, 11, 12, 12, 12, 13, 13, 14, 15, 15, 15, 16, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 21, 22, 22, 23, 24, 24, 25, 25, 25, 26, 26, 26, 27, 28, 28, 29, 30, 30, 30, 31, 31, 32, 33, 33, 34, 35, 35, 35, 36, 36, 36, 37, 37, 38, 39
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2009

Keywords

Crossrefs

Formula

a(n) = A054353(n) - n + 1.

A156267 a(n)=A054353(2*n)-A078649(n).

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 3, 2, 1, 2, 2, 1, 1, 2, 1, -1, -1, 1, 1, 2, 1, 1, 2, 2, 1, -1, 1, 1, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2, 1, 2, 3, 3, 2, 3, 4, 4, 5, 3, 3, 4, 3, 2, 3, 4, 4, 5, 3, 2, 3, 3, 2, 1, 2, 2, 1, -1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 3, 2, 3, 4, 3, 2, 1, 2, 2, 1, 1, 2, 1, -1, -1, 1, 1, -1, 1, 1
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2009

Keywords

Formula

Conjectured to be o(n)

A156268 a(n)=2*A054353(n)-A078649(n).

Original entry on oeis.org

0, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 0, -1, 1, 2, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 2, 3, 1, 1, 2, 2, 2, 3, 3, 4, 4, 2, 2, 2, 1, 1, 2, 2, 3, 5, 3, 1, 2, 2, 2, 2, 2, 3, 3, 1, 1, 2, 2, 0, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 5, 3, 2, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 1, 0, 2, 3, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2009

Keywords

Formula

Conjectured to be o(n)

A156352 a(n)=A078649(A054353(n)-n+1)-A054353(n).

Original entry on oeis.org

1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 1, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 3, 2, 1, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 1, 2, 1, 3, 2, 1, 2
Offset: 1

Views

Author

Benoit Cloitre, Feb 08 2009

Keywords

Formula

a(n)=3 iff {A000002(n),A000002(n+1),A000002(n+2)}={2,1,1}
Showing 1-10 of 37 results. Next