cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A216348 Numbers that appear in either both A156242(n) + 1 and A156243(n) or both A156242(n) and A156243(n) + 1.

Original entry on oeis.org

6, 7, 10, 15, 20, 21, 24, 25, 30, 33, 34, 37, 42, 43, 46, 47, 50, 55, 60, 61, 64, 69, 72, 73, 76, 77, 82, 87, 88, 91, 96, 101, 102, 105, 106, 109, 114, 117, 118, 123, 128, 129, 132, 137, 142, 143, 146, 147
Offset: 1

Views

Author

Jon Perry, Sep 04 2012

Keywords

Examples

			6 is in both A156242 and A156243 + 1.
7 is in both A156242 + 1 and A156243.
		

Crossrefs

Programs

  • Mathematica
    n = 10; t = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, n], 1]; t2 = Accumulate[t]; {t3, t4} = Transpose[Partition[t2, 2]]; Union[Intersection[t3, t4 + 1], Intersection[t3 + 1, t4]] (* T. D. Noe, Sep 26 2012 *)

A258025 Numbers k such that prime(k+2) - 2*prime(k+1) + prime(k) > 0.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 13, 14, 17, 20, 22, 23, 26, 28, 29, 31, 33, 35, 38, 41, 43, 45, 49, 50, 52, 57, 60, 61, 64, 65, 67, 69, 70, 71, 75, 76, 78, 79, 81, 83, 85, 86, 89, 90, 93, 95, 96, 98, 100, 104, 105, 109, 113, 116, 117, 120, 122, 123, 124, 126, 131, 134
Offset: 1

Views

Author

Clark Kimberling, Jun 02 2015

Keywords

Examples

			5 - 2*3 + 2 = 1, so a(1) = 5.
		

Crossrefs

Partition of the positive integers: A064113, A258025, A258026;
Corresponding partition of the primes: A063535, A063535, A147812.
Adjacent terms differing by 1 correspond to weak prime quartets A054819.
The version for the Kolakoski sequence is A156243.
The version for strict descents is A258026.
The version for weak ascents is A333230.
The version for weak descents is A333231.
First differences are A333212 (if the first term is 0).
Prime gaps are A001223.
Positions of adjacent equal prime gaps are A064113.
Weakly decreasing runs of compositions in standard order are A124765.
A triangle counting compositions by strict ascents is A238343.
Positions of adjacent unequal prime gaps are A333214.
Lengths of maximal anti-runs of prime gaps are A333216.

Programs

  • Mathematica
    u = Table[Sign[Prime[n+2] - 2 Prime[n+1] + Prime[n]], {n, 3, 200}];
    Flatten[Position[u, 0]]   (* A064113 *)
    Flatten[Position[u, 1]]   (* A258025 *)
    Flatten[Position[u, -1]]  (* A258026 *)
    Accumulate[Length/@Split[Differences[Array[Prime,100]],#1>=#2&]]//Most (* Gus Wiseman, Mar 25 2020 *)
    Position[Partition[Prime[Range[150]],3,1],?(#[[3]]-2#[[2]]+#[[1]]> 0&),1,Heads->False]//Flatten (* _Harvey P. Dale, Dec 25 2021 *)
  • PARI
    isok(k) = prime(k+2) - 2*prime(k+1) + prime(k) > 0; \\ Michel Marcus, Jun 03 2015
    
  • PARI
    is(n,p=prime(n))=my(q=nextprime(p+1),r=nextprime(q+1)); p + r > 2*q
    v=List(); n=0; forprime(p=2,1e4, if(is(n++,p), listput(v,n))); v \\ Charles R Greathouse IV, Jun 03 2015
    
  • Python
    from itertools import count, islice
    from sympy import prime, nextprime
    def A258025_gen(startvalue=1): # generator of terms >= startvalue
        c = max(startvalue,1)
        p = prime(c)
        q = nextprime(p)
        r = nextprime(q)
        for k in count(c):
            if p+r>(q<<1):
                yield k
            p, q, r = q, r, nextprime(r)
    A258025_list = list(islice(A258025_gen(),20)) # Chai Wah Wu, Feb 27 2024

A054354 First differences of Kolakoski sequence A000002.

Original entry on oeis.org

1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, 1, 0, -1, 0, 1, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, -1, 0, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, -1, 1, 0, -1, 1, -1, 0, 1, 0, -1, 1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1
Offset: 1

Views

Author

N. J. A. Sloane, May 07 2000

Keywords

Comments

The Kolakoski sequence has only 1's and 2's, and is cubefree. Thus, for all n>=1, a(n) is in {-1, 0, 1}, a(n+1) != a(n), and if a(n) = 0, a(n+1) = -a(n-1), while if a(n) != 0, either a(n+1) = 0 and a(n+2) = -a(n) or a(n+1) = -a(n). A further consequence is that the maximum gap between equal values is 4: for all n, there is an integer k, 1Jean-Christophe Hervé, Oct 05 2014
From Daniel Forgues, Jul 07 2015: (Start)
Second differences: {-1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, ...}
The sequence of first differences bounces between -1 and 1 with a slope whose absolute value is either 1 or 2. We can compress the information in the second differences into {-1, 1, -2, 2, -1, 2, -1, 1, ...} since the -1 and the 1 come in pairs; which can be compressed further into {1, 1, 2, 2, 1, 2, 1, 1, ...} since the signs alternate, where we only need to know that the initial sign is negative. (End)
This appears to divide the positive integers into three sets, each with density approaching 1/3. Note there are no adjacent equal parts (as mentioned above). - Gus Wiseman, Oct 10 2024

Crossrefs

Positions of 0 are A078649.
For Golomb's sequence (A001462) we have A088517.
Positions of -1 are A156242 (descents).
Positions of 1 are A156243 (ascents).
First differences (or second differences of A000002) are A376604.
The Kolakoski sequence (A000002):
- Statistics: A074286, A088568, A156077, A156253.
- Transformations: A054354, A156728, A306323, A332273, A332875, A333229.
Cf. A333254.

Programs

  • Haskell
    a054354 n = a054354_list !! (n-1)
    a054354_list = zipWith (-) (tail a000002_list) a000002_list
    -- Reinhard Zumkeller, Aug 03 2013
  • Mathematica
    a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1 + Mod[n - 1, 2]}], {n, 3, 70}, {a2[[n]]}]; Differences[a2] (* Jean-François Alcover, Jun 18 2013 *)

Formula

Abs(a(n)) = (A000002(n)+A000002(n+1)) mod 2. - Benoit Cloitre, Nov 17 2003

A376604 Second differences of the Kolakoski sequence (A000002). First differences of A054354.

Original entry on oeis.org

-1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -1, -1, 2, -2, 1, 1, -2, 2, -1, -1, 1, 1, -2, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 2, -1, -1, 2, -2, 1, 1, -2, 1, 1, -1, -1, 2, -1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -2, 2, -1, -1
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2024

Keywords

Comments

Since A000002 has no runs of length 3, this sequence contains no zeros.
The densities appear to approach (1/3, 1/3, 1/6, 1/6).

Examples

			The Kolakoski sequence (A000002) is:
  1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, ...
with first differences (A054354):
  1, 0, -1, 0, 1, -1, 1, 0, -1, 1, 0, -1, 0, 1, -1, 0, 1, 0, -1, 1, -1, 0, 1, -1, ...
with first differences (A376604):
  -1, -1, 1, 1, -2, 2, -1, -1, 2, -1, -1, 1, 1, -2, 1, 1, -1, -1, 2, -2, 1, 1, -2, ...
		

Crossrefs

A001462 is Golomb's sequence.
A078649 appears to be zeros of the first and third differences.
A288605 gives positions of first appearances of each balance.
A306323 gives a 'broken' version.
A333254 lists run-lengths of differences between consecutive primes.
For the Kolakoski sequence (A000002):
- Restrictions: A074264, A100428, A100429, A156263, A156264.
- Transformations: A054354, A156728, A332273, A332875, A333229, A376604.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,2},1,{1,2,1},2,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_]:=Nest[kolagrow,{1},n-1];
    Differences[kol[100],2]

A156242 Bisection of A054353.

Original entry on oeis.org

3, 6, 9, 12, 15, 19, 21, 24, 27, 30, 33, 36, 39, 42, 45, 47, 50, 54, 57, 60, 63, 66, 69, 72, 75, 77, 81, 84, 87, 90, 93, 96, 100, 102, 105, 108, 111, 114, 117, 120, 123, 127, 129, 132, 136, 139, 142, 145, 147, 151, 154, 156, 159, 163, 166, 169, 172, 174, 177, 181
Offset: 1

Views

Author

Benoit Cloitre, Feb 07 2009

Keywords

Comments

Positions of strict descents in the Kolakoski sequence A000002. Strict ascents are A156243. - Gus Wiseman, Mar 31 2020

Crossrefs

The version for prime gaps is A258026.
Sizes of maximal weakly increasing subsequences of A000002 are A332875.

Programs

  • Mathematica
    kolagrow[q_]:=If[Length[q]<2,Take[{1,2},Length[q]+1],Append[q,Switch[{q[[Length[Split[q]]]],q[[-2]],Last[q]},{1,1,1},0,{1,1,2},1,{1,2,1},2,{1,2,2},0,{2,1,1},2,{2,1,2},2,{2,2,1},1,{2,2,2},1]]]
    kol[n_Integer]:=Nest[kolagrow,{1},n-1];
    Join@@Position[Partition[kol[100],2,1],{2,1}] (* Gus Wiseman, Mar 31 2020 *)

Formula

a(n) = A054353(2n).
A000002(a(n))=2 and A000002(a(n)+1)=1. - Jon Perry, Sep 04 2012
Showing 1-5 of 5 results.