cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054369 Number of unlabeled 7-ary cacti having n polygons.

Original entry on oeis.org

1, 1, 7, 28, 231, 2100, 23884, 285390, 3626295, 47813815, 650367788, 9066061200, 128987761308, 1866877313448, 27417589615234, 407771633434368, 6131640607962135, 93096368350684727, 1425633586192690945, 21998953427963954554, 341803227016091180620
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=7 of A303912.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (Binomial[7*n, n]/(6 n + 1) + DivisorSum[n, Binomial[7*#, #]*EulerPhi[n/#]*Boole[# < n] & ])/n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 17 2017 *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(7*d, d))/n - 6*binomial(7*n, n)/(6*n+1)) \\ Andrew Howroyd, May 02 2018

Formula

a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(7*d, d)) - 6*binomial(7*n, n)/(6*n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 7^(7*n + 1/2) / (2 * sqrt(3*Pi) * n^(5/2) * 6^(6*n + 1)). - Vaclav Kotesovec, Jul 17 2017

Extensions

More terms from Jean-François Alcover, Jul 17 2017