A054374 Discriminant of Hermite polynomials.
1, 32, 55296, 7247757312, 92771293593600000, 141830962344853556428800000, 30619440571316366848044102687129600000, 1077325790213073725701226681195621188514296627200000
Offset: 1
Keywords
References
- G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.
Links
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
- Eric Weisstein's World of Mathematics, Hermite Polynomial.
- Wikipedia, Hermite polynomials
- Index entries for sequences related to Hermite polynomials
Crossrefs
Cf. A002109.
Programs
-
Magma
[Round(2^(3*n*(n-1)/2)*(&*[j^j: j in [1..n]])): n in [1..8]]; // G. C. Greubel, Jun 10 2018
-
Mathematica
Table[2^(3n(n-1)/2)Product[k^k,{k,1,n}],{n,1,8}] (* Indranil Ghosh, Feb 24 2017 *)
-
PARI
for(n=1,8, print1(2^(3*n*(n-1)/2)*prod(j=1,n, j^j), ", ")) \\ G. C. Greubel, Jun 10 2018
Formula
a(n) = 2^(3*n*(n-1)/2) * Product_{k=1..n} k^k.
a(n) ~ A * 2^(3*n*(n-1)/2) * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Mar 02 2023
Comments