cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054374 Discriminant of Hermite polynomials.

Original entry on oeis.org

1, 32, 55296, 7247757312, 92771293593600000, 141830962344853556428800000, 30619440571316366848044102687129600000, 1077325790213073725701226681195621188514296627200000
Offset: 1

Views

Author

Keywords

Comments

A054374 gives the discriminants of the Hermite polynomials in the conventional (physicists') normalization, and A002109 gives the discriminants of the Hermite polynomials in the (in my opinion more natural) probabilists' normalization. See refs Wikipedia and Szego eq. (6.71.7). - Alan Sokal, Mar 02 2012

References

  • G. Szego, Orthogonal Polynomials, American Mathematical Society, 1981 edition, 432 Pages.

Crossrefs

Cf. A002109.

Programs

  • Magma
    [Round(2^(3*n*(n-1)/2)*(&*[j^j: j in [1..n]])): n in [1..8]]; // G. C. Greubel, Jun 10 2018
  • Mathematica
    Table[2^(3n(n-1)/2)Product[k^k,{k,1,n}],{n,1,8}] (* Indranil Ghosh, Feb 24 2017 *)
  • PARI
    for(n=1,8, print1(2^(3*n*(n-1)/2)*prod(j=1,n, j^j), ", ")) \\ G. C. Greubel, Jun 10 2018
    

Formula

a(n) = 2^(3*n*(n-1)/2) * Product_{k=1..n} k^k.
a(n) ~ A * 2^(3*n*(n-1)/2) * n^(n*(n+1)/2 + 1/12) / exp(n^2/4), where A is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Mar 02 2023