cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054395 Numbers m such that there are precisely 2 groups of order m.

Original entry on oeis.org

4, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 45, 46, 49, 55, 57, 58, 62, 74, 82, 86, 93, 94, 99, 105, 106, 111, 118, 121, 122, 129, 134, 142, 146, 153, 155, 158, 165, 166, 169, 175, 178, 183, 194, 195, 201, 202, 203, 205, 206, 207, 214, 218, 219, 226, 231, 237
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2000

Keywords

Comments

Givens characterizes this sequence, see Theorem 5. In particular, this sequence is ({n: A215935(n) = 1} INTERSECT A005117) UNION (A060687 INTERSECT A051532). - Charles R Greathouse IV, Aug 27 2012 [This is now A350586 UNION A350322. - Charles R Greathouse IV, Jan 08 2022]
Numbers m such that A000001(m) = 2. - Muniru A Asiru, Nov 03 2017

Examples

			For m = 4, the 2 groups of order 4 are C4, C2 x C2; for m = 6, the 2 groups of order 6 are S3, C6; and for m = 9, the 2 groups of order 9 are C9, C3 x C3 where C is the cyclic group of the stated order and S is the symmetric group of the stated degree. The symbol x means direct product. - _Muniru A Asiru_, Oct 24 2017
		

Crossrefs

Equals A350586 UNION A350322.
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: this sequence (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A054395 := Filtered([1..2015], n -> NumberSmallGroups(n) = 2); # Muniru A Asiru, Oct 24 2017
    
  • GAP
    IsGivensInt := function(n)
      local p, f; p := GcdInt(n, Phi(n));
      if not IsPrimeInt(p) then return false; fi;
      if n mod p^2 = 0 then return 1 = GcdInt(p+1, n); fi;
      f := PrimePowersInt(n);
      return 1 = Number([1..QuoInt(Length(f),2)], k->f[2*k-1] mod p = 1);
    end;;
    Filtered([1..240], IsGivensInt); # Gheorghe Coserea, Dec 04 2017
    
  • Mathematica
    Select[Range[240], FiniteGroupCount[#] == 2&]
    (* or: *)
    okQ[n_] := Module[{p, f}, p = GCD[n, EulerPhi[n]]; If[! PrimeQ[p], Return[False]]; If[Mod[n, p^2] == 0, Return[1 == GCD[p + 1, n]]]; f = FactorInteger[n]; 1 == Sum[Boole[Mod[f[[k, 1]], p] == 1], {k, 1, Length[f]}]];
    Select[Range[240], okQ] (* Jean-François Alcover, Dec 08 2017, after Gheorghe Coserea *)
  • PARI
    is(n) = {
      my(p=gcd(n,eulerphi(n)), f);
      if (!isprime(p), return(0));
      if (n%p^2 == 0, return(1 == gcd(p+1, n)));
      f = factor(n); 1 == sum(k=1, matsize(f)[1], f[k,1]%p==1);
    };
    seq(N) = {
      my(a = vector(N), k=0, n=1);
      while(k < N, if(is(n), a[k++]=n); n++); a;
    };
    seq(58) \\ Gheorghe Coserea, Dec 03 2017

Extensions

More terms from Christian G. Bower, May 25 2000