A054395 Numbers m such that there are precisely 2 groups of order m.
4, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 45, 46, 49, 55, 57, 58, 62, 74, 82, 86, 93, 94, 99, 105, 106, 111, 118, 121, 122, 129, 134, 142, 146, 153, 155, 158, 165, 166, 169, 175, 178, 183, 194, 195, 201, 202, 203, 205, 206, 207, 214, 218, 219, 226, 231, 237
Offset: 1
Keywords
Examples
For m = 4, the 2 groups of order 4 are C4, C2 x C2; for m = 6, the 2 groups of order 6 are S3, C6; and for m = 9, the 2 groups of order 9 are C9, C3 x C3 where C is the cyclic group of the stated order and S is the symmetric group of the stated degree. The symbol x means direct product. - _Muniru A Asiru_, Oct 24 2017
Links
- Muniru A Asiru and Gheorghe Coserea, Table of n, a(n) for n = 1..234567, terms 1..422 from Muniru A Asiru.
- H. U. Besche, B. Eick and E. A. O'Brien, The Small Groups Library
- Clint Givens, Orders for which there exist exactly two groups (2006)
- Gordon Royle, Numbers of Small Groups
- Index entries for sequences related to groups
Crossrefs
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: this sequence (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
Programs
-
GAP
A054395 := Filtered([1..2015], n -> NumberSmallGroups(n) = 2); # Muniru A Asiru, Oct 24 2017
-
GAP
IsGivensInt := function(n) local p, f; p := GcdInt(n, Phi(n)); if not IsPrimeInt(p) then return false; fi; if n mod p^2 = 0 then return 1 = GcdInt(p+1, n); fi; f := PrimePowersInt(n); return 1 = Number([1..QuoInt(Length(f),2)], k->f[2*k-1] mod p = 1); end;; Filtered([1..240], IsGivensInt); # Gheorghe Coserea, Dec 04 2017
-
Mathematica
Select[Range[240], FiniteGroupCount[#] == 2&] (* or: *) okQ[n_] := Module[{p, f}, p = GCD[n, EulerPhi[n]]; If[! PrimeQ[p], Return[False]]; If[Mod[n, p^2] == 0, Return[1 == GCD[p + 1, n]]]; f = FactorInteger[n]; 1 == Sum[Boole[Mod[f[[k, 1]], p] == 1], {k, 1, Length[f]}]]; Select[Range[240], okQ] (* Jean-François Alcover, Dec 08 2017, after Gheorghe Coserea *)
-
PARI
is(n) = { my(p=gcd(n,eulerphi(n)), f); if (!isprime(p), return(0)); if (n%p^2 == 0, return(1 == gcd(p+1, n))); f = factor(n); 1 == sum(k=1, matsize(f)[1], f[k,1]%p==1); }; seq(N) = { my(a = vector(N), k=0, n=1); while(k < N, if(is(n), a[k++]=n); n++); a; }; seq(58) \\ Gheorghe Coserea, Dec 03 2017
Extensions
More terms from Christian G. Bower, May 25 2000
Comments