A054397 Numbers m such that there are precisely 5 groups of order m.
8, 12, 18, 20, 27, 50, 52, 68, 98, 116, 125, 135, 148, 164, 171, 212, 242, 244, 273, 292, 297, 333, 338, 343, 356, 388, 399, 404, 436, 452, 459, 548, 578, 596, 621, 628, 651, 657, 692, 722, 724, 741, 772, 777, 783, 788, 825, 855, 875, 916, 932, 964, 981
Offset: 1
Keywords
Examples
For m = 8, the 5 groups of order 8 are C8, C4 x C2, D8, Q8, C2 x C2 x C2 and for m = 12 the 5 groups of order 12 are C3 : C4, C12, A4, D12, C6 x C2 where C, D, Q mean cyclic, dihedral, quaternion groups of the stated order and A is the alternating group of the stated degree. The symbols x and : mean direct and semidirect products respectively. - _Muniru A Asiru_, Nov 03 2017
Links
- Jorge R. F. F. Lopes, Table of n, a(n) for n = 1..2035, (terms 1..120 from Muniru A Asiru and Georg Fischer).
- H. U. Besche, B. Eick and E. A. O'Brien, The Small Groups Library
- Gordon Royle, Numbers of Small Groups
- Index entries for sequences related to groups
Crossrefs
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), this sequence (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
Cf. A384370 (squarefree numbers in this sequence).
Programs
-
GAP
A054397 := Filtered([1..2015], n -> NumberSmallGroups(n) = 5); # Muniru A Asiru, Nov 03 2017
-
Mathematica
Select[Range[10^4], FiniteGroupCount[#] == 5 &] (* Robert Price, May 23 2019 *)
Formula
Sequence is { k | A000001(k) = 5 }. - Muniru A Asiru, Nov 03 2017
Extensions
More terms from Christian G. Bower, May 25 2000
Comments