cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054397 Numbers m such that there are precisely 5 groups of order m.

Original entry on oeis.org

8, 12, 18, 20, 27, 50, 52, 68, 98, 116, 125, 135, 148, 164, 171, 212, 242, 244, 273, 292, 297, 333, 338, 343, 356, 388, 399, 404, 436, 452, 459, 548, 578, 596, 621, 628, 651, 657, 692, 722, 724, 741, 772, 777, 783, 788, 825, 855, 875, 916, 932, 964, 981
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2000

Keywords

Comments

For m = 2*p^2 (p prime), there are precisely 5 groups of order m, so A079704 and A143928 (p odd prime) are two subsequences. - Bernard Schott, Dec 10 2021
For m = p^3, p prime, there are also 5 groups of order m, so A030078, where these groups are described, is another subsequence. - Bernard Schott, Dec 11 2021
For m squarefree, there are 5 groups of order m if and only if all of the following hold: 3|m, there are exactly two prime factors p,q of m such that p,q = 1 mod 3, no other relations of the form p' = 1 mod q' hold for p',q' prime factors of m. - Robin Jones, May 27 2025

Examples

			For m = 8, the 5 groups of order 8 are C8, C4 x C2, D8, Q8, C2 x C2 x C2 and for m = 12 the 5 groups of order 12 are C3 : C4, C12, A4, D12, C6 x C2 where C, D, Q  mean cyclic, dihedral, quaternion groups of the stated order and A is the alternating group of the stated degree. The symbols x and : mean direct and semidirect products respectively. - _Muniru A Asiru_, Nov 03 2017
		

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), this sequence (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
Cf. A384370 (squarefree numbers in this sequence).

Programs

  • GAP
    A054397 := Filtered([1..2015], n -> NumberSmallGroups(n) = 5); # Muniru A Asiru, Nov 03 2017
  • Mathematica
    Select[Range[10^4], FiniteGroupCount[#] == 5 &] (* Robert Price, May 23 2019 *)

Formula

Sequence is { k | A000001(k) = 5 }. - Muniru A Asiru, Nov 03 2017

Extensions

More terms from Christian G. Bower, May 25 2000