cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A030078 Cubes of primes.

Original entry on oeis.org

8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1

Views

Author

Keywords

Comments

Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021

Examples

			a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
		

References

  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.

Crossrefs

Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cf. A060800, A131991, A000578, subsequence of A046099.
Subsequence of A007422 and of A054397.

Programs

Formula

n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A064380(a(n)) = A000010(a(n)). - Vladimir Shevelev, Apr 19 2010
A003415(a(n)) = A079705(n). - Reinhard Zumkeller, Jun 26 2011
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
a(n) = A119959(n) * A008864(n) -1.- R. J. Mathar, Aug 13 2019
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)

A003277 Cyclic numbers: k such that k and phi(k) are relatively prime; also k such that there is just one group of order k, i.e., A000001(k) = 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 157, 159, 161, 163, 167, 173
Offset: 1

Views

Author

Keywords

Comments

Except for a(2)=2, all the terms in the sequence are odd. This is because of the existence of a non-cyclic dihedral group of order 2n for each n>1. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 09 2001
Also gcd(n, A051953(n)) = 1. - Labos Elemer
n such that x^n == 1 (mod n) has no solution 2 <= x <= n. - Benoit Cloitre, May 10 2002
There is only one group (the cyclic group of order n) whose order is n. - Gerard P. Michon, Jan 08 2008 [This is a 1947 result of Tibor Szele. - Charles R Greathouse IV, Nov 23 2011]
Any divisor of a Carmichael number (A002997) must be odd and cyclic. Conversely, G. P. Michon conjectured (c. 1980) that any odd cyclic number has at least one Carmichael multiple (if the conjecture is true, each of them has infinitely many such multiples). In 2007, Michon & Crump produced explicit Carmichael multiples of all odd cyclic numbers below 10000 (see link, cf. A253595). - Gerard P. Michon, Jan 08 2008
Numbers n such that phi(n)^phi(n) == 1 (mod n). - Michel Lagneau, Nov 18 2012
Contains A000040, and all members of A006094 except 6. - Robert Israel, Jul 08 2015
Number m such that n^n == r (mod m) is solvable for any r. - David W. Wilson, Oct 01 2015
Numbers m such that A074792(m) = m + 1. - Thomas Ordowski, Jul 16 2017
Squarefree terms of A056867 (see McCarthy link p. 592 and similar comment with "cubefree" in A051532). - Bernard Schott, Mar 24 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A051532. Intersection of A056867 and A005117.
Cf. A000010, A008966, A009195, A050384 (the same sequence but with the primes removed). Also A000001(a(n)) = 1.

Programs

  • Haskell
    import Data.List (elemIndices)
    a003277 n = a003277_list !! (n-1)
    a003277_list = map (+ 1) $ elemIndices 1 a009195_list
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [n: n in [1..200] | Gcd(n, EulerPhi(n)) eq 1]; // Vincenzo Librandi, Jul 09 2015
    
  • Maple
    select(t -> igcd(t, numtheory:-phi(t))=1, [$1..1000]); # Robert Israel, Jul 08 2015
  • Mathematica
    Select[Range[175], GCD[#, EulerPhi[#]] == 1 &] (* Jean-François Alcover, Apr 04 2011 *)
    Select[Range@175, FiniteGroupCount@# == 1 &] (* Robert G. Wilson v, Feb 16 2017 *)
    Select[Range[200],CoprimeQ[#,EulerPhi[#]]&] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    isA003277(n) = gcd(n,eulerphi(n))==1 \\ Michael B. Porter, Feb 21 2010
    
  • Sage
    # Compare A050384.
    def isPrimeTo(n, m): return gcd(n, m) == 1
    def isCyclic(n): return isPrimeTo(n, euler_phi(n))
    [n for n in (1..173) if isCyclic(n)] # Peter Luschny, Nov 14 2018

Formula

n = p_1*p_2*...*p_k (for some k >= 0), where the p_i are distinct primes and no p_j-1 is divisible by any p_i.
A000001(a(n)) = 1.
Erdős proved that a(n) ~ e^gamma n log log log n, where e^gamma is A073004. - Charles R Greathouse IV, Nov 23 2011
A000005(a(n)) = 2^k. - Carlos Eduardo Olivieri, Jul 07 2015
A008966(a(n)) = 1. - Bernard Schott, Mar 24 2022

Extensions

More terms from Christian G. Bower

A054395 Numbers m such that there are precisely 2 groups of order m.

Original entry on oeis.org

4, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 45, 46, 49, 55, 57, 58, 62, 74, 82, 86, 93, 94, 99, 105, 106, 111, 118, 121, 122, 129, 134, 142, 146, 153, 155, 158, 165, 166, 169, 175, 178, 183, 194, 195, 201, 202, 203, 205, 206, 207, 214, 218, 219, 226, 231, 237
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2000

Keywords

Comments

Givens characterizes this sequence, see Theorem 5. In particular, this sequence is ({n: A215935(n) = 1} INTERSECT A005117) UNION (A060687 INTERSECT A051532). - Charles R Greathouse IV, Aug 27 2012 [This is now A350586 UNION A350322. - Charles R Greathouse IV, Jan 08 2022]
Numbers m such that A000001(m) = 2. - Muniru A Asiru, Nov 03 2017

Examples

			For m = 4, the 2 groups of order 4 are C4, C2 x C2; for m = 6, the 2 groups of order 6 are S3, C6; and for m = 9, the 2 groups of order 9 are C9, C3 x C3 where C is the cyclic group of the stated order and S is the symmetric group of the stated degree. The symbol x means direct product. - _Muniru A Asiru_, Oct 24 2017
		

Crossrefs

Equals A350586 UNION A350322.
Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: this sequence (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A054395 := Filtered([1..2015], n -> NumberSmallGroups(n) = 2); # Muniru A Asiru, Oct 24 2017
    
  • GAP
    IsGivensInt := function(n)
      local p, f; p := GcdInt(n, Phi(n));
      if not IsPrimeInt(p) then return false; fi;
      if n mod p^2 = 0 then return 1 = GcdInt(p+1, n); fi;
      f := PrimePowersInt(n);
      return 1 = Number([1..QuoInt(Length(f),2)], k->f[2*k-1] mod p = 1);
    end;;
    Filtered([1..240], IsGivensInt); # Gheorghe Coserea, Dec 04 2017
    
  • Mathematica
    Select[Range[240], FiniteGroupCount[#] == 2&]
    (* or: *)
    okQ[n_] := Module[{p, f}, p = GCD[n, EulerPhi[n]]; If[! PrimeQ[p], Return[False]]; If[Mod[n, p^2] == 0, Return[1 == GCD[p + 1, n]]]; f = FactorInteger[n]; 1 == Sum[Boole[Mod[f[[k, 1]], p] == 1], {k, 1, Length[f]}]];
    Select[Range[240], okQ] (* Jean-François Alcover, Dec 08 2017, after Gheorghe Coserea *)
  • PARI
    is(n) = {
      my(p=gcd(n,eulerphi(n)), f);
      if (!isprime(p), return(0));
      if (n%p^2 == 0, return(1 == gcd(p+1, n)));
      f = factor(n); 1 == sum(k=1, matsize(f)[1], f[k,1]%p==1);
    };
    seq(N) = {
      my(a = vector(N), k=0, n=1);
      while(k < N, if(is(n), a[k++]=n); n++); a;
    };
    seq(58) \\ Gheorghe Coserea, Dec 03 2017

Extensions

More terms from Christian G. Bower, May 25 2000

A055561 Numbers m such that there are precisely 3 groups of order m.

Original entry on oeis.org

75, 363, 609, 867, 1183, 1265, 1275, 1491, 1587, 1725, 1805, 2067, 2175, 2373, 2523, 3045, 3525, 3685, 3795, 3975, 4137, 4205, 4335, 4425, 4895, 5019, 5043, 5109, 5901, 5915, 6171, 6225, 6627, 6675, 6699, 7935, 8025, 8427, 8475, 8855, 9429, 9537, 10275
Offset: 1

Views

Author

Christian G. Bower, May 25 2000; Nov 12 2003; Feb 17 2006

Keywords

Comments

Let gnu(n) (= A000001(n)) denote the "group number of n" defined in A000001 or in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), then the sequence n -> gnu(a(n)) -> gnu(gnu(a(n))) consists of 1's. - Muniru A Asiru, Nov 19 2017
From Jianing Song, Dec 05 2021: (Start)
Contains all numbers of the form k = p*q^2, where p, q are odd primes such that q == -1 (mod p) (see A350245). The 3 groups are C_(p*q^2), C_q X C_(p*q) and (C_q X C_q) : C_p, where : means semidirect product. The third group, which is the only non-abelian group of order k, can be constructed as follows: in F_q the polynomial x^(p-1) + x^(p-2) + ... + x + 1 factors into quadratic polynomials. Pick one factor x^2 + a*x + b (all factors give the same group), then (C_q X C_q) : C_p has representation .
It seems that all terms are odd. (End)

Examples

			For m = 75, the 3 groups of order 75 are C75, (C5 x C5) : C3, C15 x C5 and for m = 363 the 3 groups of order 363 are C363, (C11 x C11) : C3, C33 x C11 where C is the Cyclic group of the stated order. The symbols x and : mean direct and semi-direct products respectively. - _Muniru A Asiru_, Oct 24 2017
		

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), this sequence (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).
A350245 is a subsequence.

Programs

  • PARI
    is(n) = {
      my(p = gcd(n, eulerphi(n)),f,g);
      if (isprime(p), return(n % p^2 == 0 && isprime(gcd(p+1, n))));
      if (omega(p) != 2 || !issquarefree(n), return(0));
      f = factor(n); g = factor(p);
      1 == g[2,1] % g[1,1] &&
      1 == sum(k=1, matsize(f)[1], f[k,1] % g[1,1] == 1) &&
      1 == sum(k=1, matsize(f)[1], f[k,1] % g[2,1] == 1);
    };
    seq(N) = {
      my(a = vector(N), k=0, n=1);
      while(k < N, if(is(n), a[k++]=n); n++); a;
    };
    seq(43) \\ Gheorghe Coserea, Dec 12 2017

A054396 Numbers m such that there are precisely 4 groups of order m.

Original entry on oeis.org

28, 30, 44, 63, 66, 70, 76, 92, 102, 117, 124, 130, 138, 154, 170, 172, 174, 182, 188, 190, 230, 236, 238, 246, 266, 268, 275, 279, 282, 284, 286, 290, 315, 316, 318, 322, 332, 354, 370, 374, 387, 412, 418, 426, 428, 430, 434, 442, 465, 470, 494, 495, 498
Offset: 1

Views

Author

N. J. A. Sloane, May 21 2000

Keywords

Examples

			For m = 28, the 4 groups of order 8 are C7 : C4, C28, D28, C14 x C2 and for m = 30 the 4 groups of order 30 are C5 x S3, C3 x D10, D30, C30 where C, D mean cyclic, dihedral groups of the stated order and S is the symmetric group of the stated degree. The symbols x and : mean direct and semidirect products respectively. - _Muniru A Asiru_, Nov 04 2017
		

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), this sequence (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

Formula

Sequence is { m | A000001(m) = 4 }. - Muniru A Asiru, Nov 04 2017

Extensions

More terms from Christian G. Bower, May 25 2000

A079704 a(n) = 2*prime(n)^2.

Original entry on oeis.org

8, 18, 50, 98, 242, 338, 578, 722, 1058, 1682, 1922, 2738, 3362, 3698, 4418, 5618, 6962, 7442, 8978, 10082, 10658, 12482, 13778, 15842, 18818, 20402, 21218, 22898, 23762, 25538, 32258, 34322, 37538, 38642, 44402, 45602, 49298, 53138, 55778
Offset: 1

Views

Author

Jon Perry, Jan 31 2003

Keywords

Comments

Numbers of the form 2*p^2 where p runs through the primes.
For these numbers m, there are precisely 5 groups of order m, hence this is a subsequence of A054397. If p = 2, these 5 groups of order 8 are described in example section of A054397, and when p is odd prime, the five corresponding groups are described in a comment of A143928. - Bernard Schott, Dec 11 2021

Examples

			a(2) = prime(2)^2*2 = 3^2*2 = 9*2 = 18.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

A143928 is a subsequence.

Programs

  • Haskell
    a079704 = (* 2) . a001248  -- Reinhard Zumkeller, Nov 19 2013
    
  • Magma
    [2*p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 27 2014
    
  • Mathematica
    2 Prime[Range[40]]^2 (* Vincenzo Librandi, Mar 27 2014 *)
  • PARI
    forprime (p=2,100,print1(p^2*2","))
    
  • Python
    from sympy import primerange
    print([2*p**2 for p in primerange(1, 200)]) # Michael S. Branicky, Dec 11 2021

Formula

a(n) = 2*A001248(n) = A100484(n)*A000040(n). - Reinhard Zumkeller, Nov 19 2013

Extensions

More terms from Vincenzo Librandi, Jan 29 2010
Offset corrected by Reinhard Zumkeller, Nov 19 2013

A135850 Numbers m such that there are precisely 6 groups of order m.

Original entry on oeis.org

42, 78, 110, 114, 147, 186, 222, 225, 258, 310, 366, 402, 406, 410, 438, 474, 506, 507, 525, 582, 602, 610, 618, 654, 710, 735, 762, 834, 906, 942, 975, 978, 994, 1010, 1083, 1086, 1089, 1158, 1194, 1266, 1310, 1338, 1374, 1378, 1425, 1446, 1474, 1510, 1582
Offset: 1

Views

Author

N. J. A. Sloane, based on a suggestion from Neven Juric, Mar 08 2008

Keywords

Comments

Let gnu(n) = A000001(n) denote the "group number of n" defined in A000001 or in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), then the sequence n -> gnu(a(n)) -> gnu(gnu(a(n))) -> gnu(gnu(gnu(a(n)))) consists of 1's. - Muniru A Asiru, Nov 19 2017

Examples

			For m = 42, the 6 groups of order 42 are (C7 : C3) : C2, C2 x (C7 : C3), C7 x S3, C3 x D14, D42, C42 and for n = 78 the 6 groups of order 78 are (C13 : C3) : C2, C2 x (C13 : C3), C13 x S3, C3 x D26, D78, C78 where C, D mean Cyclic, Dihedral groups of the stated order and S is the Symmetric group of the stated degree. The symbols x and : mean direct and semidirect products respectively. - _Muniru A Asiru_, Nov 04 2017
		

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), this sequence (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A135850 := Filtered([1..2015], n -> NumberSmallGroups(n) = 6); # Muniru A Asiru, Nov 04 2017
  • Mathematica
    Select[Range[10^4], FiniteGroupCount[#] == 6 &] (* Robert Price, May 23 2019 *)

Formula

Sequence is { m | A000001(m) = 6 }. - Muniru A Asiru, Nov 04 2017

A249551 Numbers m such that there are precisely 8 groups of order m.

Original entry on oeis.org

510, 690, 870, 910, 1122, 1190, 1330, 1395, 1410, 1590, 1610, 1770, 1914, 2002, 2210, 2346, 2470, 2490, 2590, 2618, 2670, 2706, 2745, 2926, 2958, 2990, 3094, 3102, 3210, 3230, 3290, 3390, 3458, 3465, 3498, 3710, 3770, 3894, 3910, 4002, 4110, 4130, 4182, 4186, 4370, 4470
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2014

Keywords

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), this sequence (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A249551 := Filtered([1..2015], n -> NumberSmallGroups(n) = 8); # Muniru A Asiru, Oct 18 2017
  • Mathematica
    Select[Range[10^4], FiniteGroupCount[#] == 8 &] (* A current limit in Mathematica is such that some orders >2047 may not be evaluated.*) (* Robert Price, May 24 2019 *)

Extensions

a(15)-a(16) from Muniru A Asiru, Oct 18 2017
More terms from Michael De Vlieger, Oct 18 2017
Missing terms added by Andrey Zabolotskiy, Oct 27 2017

A249552 Numbers m such that there are precisely 9 groups of order m.

Original entry on oeis.org

308, 532, 644, 836, 868, 1316, 1364, 1652, 1748, 1815, 1876, 1892, 2068, 2212, 2324, 2356, 2596, 2852, 2884, 2996, 3124, 3268, 3476, 3572, 3652, 3668, 3892, 3956, 4228, 4263, 4484, 4532, 4564, 4676, 4708, 5012, 5092, 5332, 5348, 5396, 5428, 5572, 5588, 5764, 5828, 6004, 6116, 6164, 6244, 6308, 6356, 6532
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2014

Keywords

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), this sequence (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A249552:=Filtered([1..2015],n->NumberSmallGroups(n)=9); # Muniru A Asiru, Nov 17 2017
  • Maple
    select(t -> GroupTheory:-NumAbelianGroups(t) <= 9 and GroupTheory:-NumGroups(t) = 9, [$1..10000]); # Robert Israel, Mar 26 2018

Extensions

a(13)-a(16) from Muniru A Asiru, Oct 21 2017
More terms from Muniru A Asiru, Oct 23 2017
More terms from Muniru A Asiru, Nov 17 2017
Incorrect b-file shortened by Jorge R. F. F. Lopes, Jan 07 2022

A249553 Numbers m such that there are precisely 10 groups of order m.

Original entry on oeis.org

90, 132, 198, 276, 306, 350, 414, 490, 522, 564, 650, 708, 738, 846, 850, 852, 950, 954, 996, 1062, 1078, 1150, 1274, 1278, 1284, 1450, 1485, 1494, 1572, 1602, 1666, 1690, 1694, 1818, 1850, 1862, 1926, 2004, 2034, 2148, 2150, 2254, 2292, 2325, 2350, 2358, 2466, 2475, 2650, 2682, 2724, 2868, 2890, 2950, 3006, 3012, 3038, 3114, 3146, 3156
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2014

Keywords

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), A249550 (k=7), A249551 (k=8), A249552 (k=9), this sequence (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • GAP
    A249553 := Filtered([1..2015], n -> NumberSmallGroups(n) = 10); # Muniru A Asiru, Oct 16 2017
  • Mathematica
    Select[ Range@2047, FiniteGroupCount@# == 10 &] (* Robert G. Wilson v, Nov 30 2017 *)

Extensions

More terms from Michael De Vlieger, Oct 16 2017
More terms from Muniru A Asiru, Oct 24 2017
Showing 1-10 of 27 results. Next