A054416 Numbers k such that 9090...9091 (with k-1 copies of 90 and one copy of 91) is prime.
2, 3, 9, 15, 26, 33, 146, 320, 1068, 1505, 134103, 800393
Offset: 1
Examples
The first 3 numbers are 9091, 909091, 909090909090909091.
References
- J. A. H. Hunter and J. S. Madachy, Mathematical Diversions, New York: Dover Publications, Inc., 1974, pp. 4-5. Originally published by Van Nostrand, 1963.
Links
- David Broadhurst, Proof that 1505 term is prime [BROKEN LINK]
- David Broadhurst, Unique record, digest of 3 messages in primenumbers Yahoo group, Apr 8-9, 2001. [Cached copy]
Crossrefs
Cf. A001562.
Programs
-
Mathematica
Do[ If[ PrimeQ[ 10*(10^(2n) - 1)/11 + 1], Print[ n ] ], {n, 0, 1505} ] Position[Table[FromDigits[PadLeft[{9,1},2n,{9,0}]],{n,1510}], ?PrimeQ]// Flatten (* _Harvey P. Dale, Nov 02 2017 *)
-
Python
from sympy import isprime, prime def afind(limit, startk=1): s = "90"*(startk-1) for k in range(startk, limit+1): if isprime(int(s+"91")): print(k, end=", ") s += "90" afind(400) # Michael S. Branicky, Jan 13 2022
Formula
a(n) = (A001562(n)-1)/2.
Extensions
More terms from Michael Kleber and Harvey Dubner (harvey(AT)dubner.com), May 22 2000
Ignacio Larrosa CaƱestro reports that the 1068 term has now been established to be a prime using Titanix 1.01, Oct 23 2000
a(11)-a(12) from Michael S. Branicky, Jan 13 2022 using A001562
Comments