cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054447 Row sums of triangle A054446 (partial row sums triangle of Fibonacci convolution triangle).

Original entry on oeis.org

1, 3, 9, 26, 73, 201, 545, 1460, 3873, 10191, 26633, 69198, 178889, 460437, 1180545, 3016552, 7684481, 19522203, 49473097, 125093506, 315654537, 795016545, 1998909985, 5017895196, 12578040097, 31485713511, 78716283081, 196563649718, 490301138569, 1221726409005
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2000

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -2, -4, -1}, {1, 3, 9, 26}, 30] (* Michael De Vlieger, Jun 23 2020 *)
  • Maxima
    a(n):=sum(k*sum(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k),k,1,n); /* Vladimir Kruchinin, Sep 06 2010 */

Formula

a(n) = Sum_{m=0..n} A054446(n,m) = ((n+1)*P(n+2)+(2-n)*P(n+1))/4, with P(n)=A000129(n) (Pell numbers).
G.f.: Pell(x)/(1-x*Fib(x)) = (Pell(x)^2)/Fib(x), with Pell(x)= 1/(1-2*x-x^2) = g.f. A000129(n+1) (Pell numbers without 0) and Fib(x)=1/(1-x-x^2) = g.f. A000045(n+1) (Fibonacci numbers without 0).
a(n) = Sum_(k*Sum_(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k),k,1,n), n>0. - Vladimir Kruchinin, Sep 06 2010
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4), a(0)=1, a(1)=3, a(2)=9, a(3)=26. - Philippe Deléham, Jan 22 2014
G.f.: (1-x-x^2)/(1-2*x-x^2)^2 = g(f(x))/x, where g is g.f. of A001477 and f is g.f. of A000045. - Oboifeng Dira, Jun 21 2020