A054479 Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.
1, 0, 6, 120, 6300, 514080, 62785800, 10676746080, 2413521910800, 700039083744000, 253445583029839200, 112033456760809584000, 59382041886244720843200, 37175286835046004765120000, 27139206193305890195912400000, 22852066417535931447551359680000
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add( b(n-2*j)*binomial(n-1, 2*j-1)*(2*j-1)!, j=2..n/2)) end: a:= n-> b(2*n): seq(a(n), n=0..15); # Alois P. Heinz, Mar 06 2023
-
Mathematica
Table[(n-1)*(2*n)!^2 * HypergeometricPFQ[{2-n},{3/2-n},-1/2] / (4^n*(n-1/2)*(n!)^2), {n, 0, 20}] (* Vaclav Kotesovec, Mar 29 2014 after Mark van Hoeij *)
-
PARI
x='x+O('x^66); v=Vec(serlaplace(1/(sqrt(exp(x^2)*(1-x^2))))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 13 2013
Formula
If b(2n)=a(n) then e.g.f. of b is 1/(sqrt(exp(x^2)*(1-x^2))).
a(n) = 4^n*(n-1)*gamma(n+1/2)^2*hypergeom([2-n],[3/2-n],-1/2)/(Pi*(n-1/2)). - Mark van Hoeij, May 13 2013
a(n) ~ 2^(2*n+1) * n^(2*n) / exp(2*n+1/2). - Vaclav Kotesovec, Mar 29 2014
Comments