A054504 Numbers n such that Mordell's equation y^2 = x^3 + n has no integral solutions.
6, 7, 11, 13, 14, 20, 21, 23, 29, 32, 34, 39, 42, 45, 46, 47, 51, 53, 58, 59, 60, 61, 62, 66, 67, 69, 70, 74, 75, 77, 78, 83, 84, 85, 86, 87, 88, 90, 93, 95, 96, 102, 103, 104, 109, 110, 111, 114, 115, 116, 118, 123, 124, 130, 133, 135, 137, 139, 140, 146, 147, 149, 153, 155
Offset: 1
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 192.
- J. Gebel, A. Petho and H. G. Zimmer, On Mordell's equation, Compositio Mathematica 110 (3) (1998), 335-367.
Links
- T. D. Noe, Table of n, a(n) for n = 1..6603 (from Gebel)
- Pantelis Andreou, Stavros Konstantinidis, and Taylor J. Smith, Improved Randomized Approximation of Hard Universality and Emptiness Problems, arXiv:2403.08707 [cs.DS], 2024. See p. 16.
- Ryan D'Mello, Marshall Hall's Conjecture and Gaps Between Integer Points on Mordell Elliptic Curves, arXiv preprint arXiv:1410.0078, 2014
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
- Eric Weisstein's World of Mathematics, Mordell Curve
Programs
-
Mathematica
m = 155; f[_List] := ( xm = 2 xm; ym = Ceiling[xm^(3/2)]; Complement[Range[m], Outer[Plus, Range[0, ym]^2, -Range[-xm, xm]^3] //Flatten //Union]); xm=10; FixedPoint[f, {}] (* Jean-François Alcover, Apr 28 2011 *)
Extensions
Apostol gives all values of n < 100. Extended by David W. Wilson, Sep 25 2000
Comments