cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A081119 Number of integral solutions to Mordell's equation y^2 = x^3 + n.

Original entry on oeis.org

5, 2, 2, 2, 2, 0, 0, 7, 10, 2, 0, 4, 0, 0, 4, 2, 16, 2, 2, 0, 0, 2, 0, 8, 2, 2, 1, 4, 0, 2, 2, 0, 2, 0, 2, 8, 6, 2, 0, 2, 2, 0, 2, 4, 0, 0, 0, 2, 2, 2, 0, 2, 0, 2, 2, 2, 6, 0, 0, 0, 0, 0, 4, 5, 8, 0, 0, 4, 0, 0, 2, 2, 12, 0, 0, 2, 0, 0, 2, 8, 2, 2, 0, 0, 0, 0, 0, 0, 8, 0, 2, 2, 0, 2, 0, 0, 2, 2, 2, 12
Offset: 1

Views

Author

T. D. Noe, Mar 06 2003

Keywords

Comments

Mordell's equation has a finite number of integral solutions for all nonzero n.
Gebel, Petho, and Zimmer (1998) computed the solutions for |n| <= 10^4. Bennett and Ghadermarzi (2015) extended this bound to |n| <= 10^7.
Sequence A054504 gives n for which there are no integral solutions. See A081120 for the number of integral solutions to y^2 = x^3 - n.
a(n) is odd iff n is a cube. - Bernard Schott, Nov 23 2019
From Jianing Song, Aug 24 2022: (Start)
a(n) = 5 if n is a sixth power. Further more, if A060950(n) = 0 (namely the elliptic curve y^2 = x^3 + n has rank 0), then:
- a(n) = 2 if n is a square but not a sixth power;
- a(n) = 1 if n is a cube but not a sixth power;
- a(n) = 0 otherwise.
This follows from the complete description of the torsion group of y^2 = x^3 + n, using O to denote the point at infinity (see Exercise 10.19 of Chapter X of Silverman's Arithmetic of elliptic curves):
- If n = t^6 is a sixth power, then the torsion group consists of O, (2*t^2,+-3*t^3), (0,+-t^3), and (-t^2, 0).
- If n = t^2 is not a sixth power, then the torsion group consists of O and (0,+-t).
- If n = t^3 is not a sixth power, then the torsion group consists of O and (-t,0).
- If n is of the form -432*t^6, then the torsion group consists of O and (12*t^2,+-36*t^3).
- In all the other cases, the torsion group is trivial.
So a torsion point on y^2 = x^3 + n other than O is an integral point. If y^2 = x^3 + n has rank 0, then all the integral points on y^2 = x^3 + n are exactly the torsion points other than O.
Note that this result implies particularly that a(n) = a(n*t^6) for all t if A060950(n) = 0: the elliptic curve y^2 = x^3 + n*t^6 can be written as (y/t^3)^2 = (x/t^2)^3 + n, so it has the same Mordell-Weil group (hence the same rank and isomorphic torsion group) as y^2 = x^3 + n. (End)

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.
  • J. Gebel, A. Petho and H. G. Zimmer, On Mordell's equation, Compositio Mathematica 110 (3) (1998), 335-367.

Crossrefs

Cf. A054504, A081120. See A134108 for another version.

Programs

Extensions

Edited by Max Alekseyev, Feb 06 2021

A081121 Numbers k such that Mordell's equation y^2 = x^3 - k has no integral solutions.

Original entry on oeis.org

3, 5, 6, 9, 10, 12, 14, 16, 17, 21, 22, 24, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 42, 43, 46, 50, 51, 52, 57, 58, 59, 62, 65, 66, 68, 69, 70, 73, 75, 77, 78, 80, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99
Offset: 1

Views

Author

T. D. Noe, Mar 06 2003

Keywords

Comments

Mordell's equation has a finite number of integral solutions for all nonzero k. Gebel computes the solutions for k < 10^5. Sequence A054504 gives k for which there are no integral solutions to y^2 = x^3 + k. See A081120 for the number of integral solutions to y^2 = x^3 - n.
This is the complement of A106265. - M. F. Hasler, Oct 05 2013
Numbers k such that A081120(k) = 0. - Charles R Greathouse IV, Apr 29 2015

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 191.

Crossrefs

Programs

  • Mathematica
    m = 99; f[_List] := (xm = 2 xm; ym = Ceiling[xm^(3/2)];
    Complement[Range[m], Outer[Plus, -Range[0, ym]^2, Range[-xm, xm]^3] //Flatten //Union]); xm=10; FixedPoint[f, {}] (* Jean-François Alcover, Apr 29 2011 *)

A179145 Numbers n such that Mordell's equation y^2 = x^3 + n has exactly 1 integral solution.

Original entry on oeis.org

27, 125, 216, 1728, 2197, 3375, 4913, 6859, 8000, 13824, 19683, 24389, 27000, 29791, 59319, 68921, 74088, 79507, 91125, 103823, 110592, 132651, 140608, 148877, 157464, 166375, 195112, 205379, 216000, 226981, 238328, 287496, 300763, 314432
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Complement of A356703 among the positive cubes.
Cf. also A179163, A179419.

Programs

  • Mathematica
    (* Assuming every term is a cube *) xmax = 2000; r[n_] := Reap[ Do[ rpos = Reduce[y^2 == x^3 + n, y, Integers]; If[rpos =!= False, Sow[rpos]]; rneg = Reduce[y^2 == (-x)^3 + n, y, Integers]; If[rneg =!= False, Sow[rneg]], {x, 1, xmax}]]; ok[n_] := Which[ rn = r[n]; rn[[2]] === {}, False, Length[rn[[2]]] > 1, False, ! FreeQ[rn[[2, 1]], Or], False, True, True]; ok[n_ /; !IntegerQ[n^(1/3)]] = False; ok[1]=False; A179145 = Reap[ Do[ If[ok[n], Print[n]; Sow[n]], {n, 1, 320000}]][[2, 1]] (* Jean-François Alcover, Apr 12 2012 *)

Formula

a(n) = A356709(n)^3. - Jianing Song, Aug 24 2022

Extensions

Edited and extended by Ray Chandler, Jul 11 2010

A179162 a(n) = least positive k such that Mordell's equation y^2 = x^3 + k has exactly n integral solutions.

Original entry on oeis.org

6, 27, 2, 343, 12, 1, 37, 8, 24, 512, 9, 35611289, 73, 10218313, 315, 129554216, 17, 274625, 297, 17576000, 2817, 200201625, 1737
Offset: 0

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

Additional known terms: a(24)=4481, a(26)=225, a(28)=2089, a(32)=1025.
For least positive k such that equation y^2 = x^3 - k has exactly n integral solutions, see A179175.
If n is odd, then a(n) is perfect cube. [Ray Chandler]

Crossrefs

Extensions

Edited and a(11), a(13), a(15), a(17), a(19), a(21) added by Ray Chandler, Jul 11 2010

A006454 Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.

Original entry on oeis.org

0, 3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726275, 20720703, 160554240, 703893960, 5454117903, 23911673955, 185279454480, 812293020528, 6294047334435, 27594051024015, 213812329916328, 937385441796000, 7263325169820735, 31843510970040003, 246739243443988680
Offset: 0

Views

Author

Keywords

Comments

Alternative definition: a(n) is triangular and a(n)/2 is the harmonic average of consecutive triangular numbers. See comments and formula section of A005563, of which this sequence is a subsequence. - Raphie Frank, Sep 28 2012
As with the Sophie Germain triangular numbers (A124174), 35 = (a(n) - a(n-6))/(a(n-2) - a(n-4)). - Raphie Frank, Sep 28 2012
Sophie Germain triangular numbers of the second kind as defined in A217278. - Raphie Frank, Feb 02 2013
Triangular numbers m such that m+1 is a square. - Bruno Berselli, Jul 15 2014
From Vladimir Pletser, Apr 30 2017: (Start)
Numbers a(n) which are the triangular number T(b(n)), where b(n) is the sequence A006451(n) of numbers n such that T(n)+1 is a square.
a(n) also gives the x solutions of the 3rd-degree Diophantine Bachet-Mordell equation y^2 = x^3 + K, with y = T(b(n))*sqrt(T(b(n))+1) = A285955(n) and K = T(b(n))^2 = A285985(n), the square of the triangular number of b(n) = A006451(n).
Also: This sequence is a subsequence of A000217(n), namely A000217(A006451(n)). (End)

Examples

			From _Raphie Frank_, Sep 28 2012: (Start)
35*(528 - 15) + 0 = 17955 = a(6),
35*(4095 - 120) + 3 = 139128 = a(7),
35*(17955 - 528) + 15 = 609960 = a(8),
35*(139128 - 4095) + 120 = 4726275 = a(9). (End)
From _Raphie Frank_, Feb 02 2013: (Start)
a(7) = 139128 and a(9) = 4726275.
a(9) = (2*(sqrt(8*a(7) + 1) - 1)/2 + 3*sqrt(a(7) + 1) + 1)^2 - 1 = (2*(sqrt(8*139128 + 1) - 1)/2 + 3*sqrt(139128 + 1) + 1)^2 - 1 = 4726275.
a(9) = 1/2*((3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)^2 + (3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)) = 1/2*((3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)^2 + (3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)) = 4726275. (End)
From _Vladimir Pletser_, Apr 30 2017: (Start)
For n=2, b(n)=5, a(n)=15
For n=5, b(n)=90, a(n)= 4095
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. (End)
		

References

  • Edward J. Barbeau, Pell's Equation, New York: Springer-Verlag, 2003, p. 17, Exercise 1.2.
  • Allan J. Gottlieb, How four dogs meet in a field, and other problems, Technology Review, Jul/August 1973, pp. 73-74.
  • Vladimir Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. sqrt(a(n) + 1) = A006452(n + 1) = A216162(2n + 2) and (sqrt(8a(n) + 1) - 1)/2 = A006451.
Cf. A217278, A124174, A216134. - Raphie Frank, Feb 02 2013
Subsequence of A182334.

Programs

  • Magma
    I:=[0,3,15,120,528,4095]; [n le 6 select I[n] else 35*(Self(n-2) - Self(n-4)) + Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 21 2015
    
  • Maple
    A006454:=-3*z*(1+4*z+z**2)/(z-1)/(z**2-6*z+1)/(z**2+6*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
    restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0,0','1,3','2,15'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=b*(b+1)/2; print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do: # Vladimir Pletser, Apr 30 2017
  • Mathematica
    Clear[a]; a[0] = a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := 6a[n - 2] - a[n - 4]; Array[a, 40]^2 - 1 (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)
    LinearRecurrence[{1,34,-34,-1,1},{0,3,15,120,528},30] (* Harvey P. Dale, Feb 18 2023 *)
  • PARI
    concat(0, Vec(3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30))) \\ Colin Barker, Apr 30 2017

Formula

a(n) = A006451(n)*(A006451(n)+1)/2.
a(n) = A006452(n)^2 - 1. - Joerg Arndt, Mar 04 2011
a(n) = 35*(a(n-2) - a(n-4)) + a(n-6). - Raphie Frank, Sep 28 2012
From Raphie Frank, Feb 01 2013: (Start)
a(0) = 0, a(1) = 3, and a(n+2) = (2x + 3y + 1)^2 - 1 = 1/2*((3x + 4y + 1)^2 + (3x + 4y + 1)) where x = (sqrt(8*a(n) + 1) - 1)/2 = A006451(n) = 1/2*(A216134(n + 1) + A216134(n - 1)) and y = sqrt(a(n) + 1) = A006452(n + 1) = 1/2*(A216134(n + 1) - A216134(n - 1)).
Note that A216134(n + 1) = x + y, and A216134(n + 3) = (2x + 3y + 1) + (3x + 4y + 1) = (5x + 7y + 2), where A216134 gives the indices of the Sophie Germain triangular numbers. (End)
a(n) = (1/64)*(((4 + sqrt(2))*(1 -(-1)^(n+1)*sqrt(2))^(2* floor((n+1)/2)) + (4 - sqrt(2))*(1 + (-1)^(n+1)*sqrt(2))^(2*floor((n+1)/2))))^2 - 1. - Raphie Frank, Dec 20 2015
From Vladimir Pletser, Apr 30 2017: (Start)
Since b(n) = 8*sqrt(T(b(n-2))+1)+ b(n-4) = 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-1)=-1, b(0)=0, b(1)=2, b(2)=5 (see A006451) and a(n) = T(b(n)) (this sequence), we have:
a(n) = ((8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4))*(8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1)/2). (End)
From Colin Barker, Apr 30 2017: (Start)
G.f.: 3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)).
a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5) for n > 4.
(End)
a(n) = (A001109(n/2+1) - 2*A001109(n/2))^2 - 1 if n is even, and (A001109((n+3)/2) - 4*A001109((n+1)/2))^2 - 1 if n is odd (Subramaniam, 1999). - Amiram Eldar, Jan 13 2022

Extensions

Better description from Harvey P. Dale, Jan 28 2001
More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001
Minor edits by N. J. A. Sloane, Oct 24 2009

A106265 Numbers a > 0 such that the Diophantine equation a + b^2 = c^3 has integer solutions b and c.

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 35, 39, 40, 44, 45, 47, 48, 49, 53, 54, 55, 56, 60, 61, 63, 64, 67, 71, 72, 74, 76, 79, 81, 83, 87, 89, 95, 100, 104, 106, 107, 109, 112, 116, 118, 121, 124, 125, 126, 127, 128, 135, 139, 143, 146, 147, 148, 150, 151, 152, 153
Offset: 1

Views

Author

Zak Seidov, Apr 28 2005

Keywords

Comments

A given a(n) can have multiple solutions with distinct (b,c), e.g., a=4 with b=2, c=2 (4 + 2^2 = 2^3) or with b=11, c=5 (4 + 11^2 = 5^3). (See also A181138.) Sequences A106266 and A106267 list the minimal values. - M. F. Hasler, Oct 04 2013
The cubes A000578 = (1, 8, 27, 64, ...) form a subsequence of this sequence, corresponding to b=0, a=c^3. If b=0 is excluded, these terms are not present, except for a few exceptions, a = 216, 343, 12167, ... (6^3 + 28^2 = 10^3, 7^3 + 13^2 = 8^3, 23^3 + 588^2 = 71^3, ...), cf. A038597 for the possible b-values. - M. F. Hasler, Oct 05 2013
This is the complement of A081121. The values do indeed correspond to solutions listed in Gebel's file. - M. F. Hasler, Oct 05 2013
B-file corrected following a remark by Alois P. Heinz, May 24 2019. A double-check would be appreciated in view of two values that were missing, for unknown reasons, in the earlier version of the b-file. - M. F. Hasler, Aug 10 2024

Examples

			a = 1,2,4,7,8,11,13,15,18,19,20,23,25,26,27,28,35,39,40,44,45,47,48,49,53, ...
b = 0,5,2,1,0, 4,70, 7, 3,18,14, 2,10, 1, 0, 6,36, 5,52, 9,96,13,4,524,26, ...
c = 1,3,2,2,2, 3,17, 4, 3, 7, 6, 3, 5, 3, 3, 4,11, 4,14, 5,21, 6, 4,65, 9, ...
Here are the values grouped together:
{{1, 0, 1}, {2, 5, 3}, {4, 2, 2}, {7, 1, 2}, {8, 0, 2}, {11, 4, 3}, {13, 70, 17}, {15, 7, 4}, {18, 3, 3}, {19, 18, 7}, {20, 14, 6}, {23, 2, 3}, {25, 10, 5}, {26, 1, 3}, {27, 0, 3}, {28, 6, 4}, {35, 36, 11}, {39, 5, 4}, {40, 52, 14}, {44, 9, 5}, {45, 96, 21}, {47, 13, 6}, {48, 4, 4}, {49, 524, 65}, {53, 26, 9}, {54, 17, 7}, {55, 3, 4}, {56, 76, 18}, {60, 2, 4}, {61, 8, 5}, {63, 1, 4}, {64, 0, 4}, {67, 110, 23}, {71, 21, 8}, ... }
a(2243) = 10000 = 25^3 - 75^2. - _M. F. Hasler_, Oct 05 2013, index corrected Aug 10 2024
a(136) = 366 = 11815^3 - 1284253^2 (has c/a(n) ~ 32.3); a(939) = 3607 = 244772^3 - 121099571^2 (has c/a(n) ~ 67.9); a(1090) = 4265 = 84521^3 - 24572364^2 (has c/a(n) ~ 19.8). - _M. F. Hasler_, Aug 10 2024
		

Crossrefs

Cf. A106266, A106267 for respective minimal values of b and c.
Cf. A023055: (Apparent) differences between adjacent perfect powers (integers of form a^b, a >= 1, b >= 2); A076438: n which appear to have a unique representation as the difference of two perfect powers; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1; A076440: n which appear to have a unique representation as the difference of two perfect powers and one of those powers is odd; that is, there is only one solution to Pillai's equation a^x - b^y = n, with a>0, b>0, x>1, y>1 and that solution has odd x or odd y (or both odd); A075772: Difference between n-th perfect power and the closest perfect power, etc.

Programs

  • Mathematica
    f[n_] := Block[{k = Floor[n^(1/3) + 1]}, While[k < 10^6 && !IntegerQ[ Sqrt[k^3 - n]], k++ ]; If[k == 10^6, 0, k]]; Select[ Range[ 154], f[ # ] != 0 &] (* Robert G. Wilson v, Apr 28 2005 *)
  • PARI
    select( {is_A106265(a, L=99)=for(c=sqrtnint(a, 3), (a+9)*L, issquare(c^3-a, &b) && return(c))}, [1..199]) \\ The function is_A106265 returns 0 if n isn't a term, or else the c-value (A106267) which can't be zero if n is a term. The L-value can be used to increase the search limit but so far no instance is known that requires L>68. - M. F. Hasler, Aug 10 2024

Formula

a(n) = A106267(n)^3 - A106266(n)^2.

Extensions

More terms from Robert G. Wilson v, Apr 28 2005
Definition corrected, solutions with b=0 added by M. F. Hasler, Sep 30 2013

A087286 Possible differences between a square and the closest smaller cube.

Original entry on oeis.org

1, 3, 8, 9, 12, 15, 17, 18, 19, 22, 24, 30, 36, 37, 38, 40, 44, 55, 57, 64, 65, 68, 71, 73, 79, 80, 89, 97, 98, 100, 101, 106, 107, 108, 112, 113, 119, 121, 128, 129, 138, 141, 145, 148, 151, 154, 156, 161, 163, 164, 168, 169, 171, 172, 190, 196, 197, 198, 204, 208
Offset: 1

Views

Author

Hugo Pfoertner, Sep 18 2003

Keywords

Comments

Integers of the form m^2 - floor((m^2-1)^(1/3))^3 for integer m.

Examples

			2^2-1^3=3, 3^2-2^3=1, 4^2-2^3=8, 5^2-2^3=17, 6^2-3^3=9, 7^2-3^3=22,...,
1138^2-109^3=15
		

Crossrefs

A134108 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 + n.

Original entry on oeis.org

3, 1, 1, 1, 1, 0, 0, 4, 5, 1, 0, 2, 0, 0, 2, 1, 8, 1, 1, 0, 0, 1, 0, 4, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 4, 3, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 3, 0, 0, 0, 0, 0, 2, 3, 4, 0, 0, 2, 0, 0, 1, 1, 6, 0, 0, 1, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 0, 0, 4, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 6, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007, Oct 14 2007

Keywords

Comments

a(n) = A081119(n)/2 if A081119(n) is even, (A081119(n)+1)/2 if A081119(n) is odd (i.e. if n is a cubic number).
Comment from T. D. Noe, Oct 12 2007: In sequences A134108 (this entry) and A134109 dealing with the equation y^2 = x^3 + n, one could note that these are Mordell equations. Here are some related sequences: A054504, A081119, A081120, A081121. The link "Integer points on Mordell curves" has data on 20000 values of n. A134108 and A134109 count only solutions with y >= 0 and can be derived from A081119 and A081120.

Examples

			y^2 = x^3 + 1 has solutions (y, x) = (0, -1), (1, 0) and (3, 2), hence a(1) = 3.
y^2 = x^3 + 6 has no solutions, hence a(6) = 0.
y^2 = x^3 + 17 has 8 solutions (see A029727, A029728), hence a(17) = 8.
y^2 = x^3 + 27 has solution (y, x) = (0, -3), hence a(27) = 1.
		

Crossrefs

Programs

A179149 Numbers k such that Mordell's equation y^2 = x^3 + k has exactly 5 integral solutions.

Original entry on oeis.org

1, 64, 729, 1000, 2744, 4096, 15625, 21952, 35937, 46656, 50653, 64000, 117649, 262144, 343000, 531441, 592704, 681472, 729000, 753571, 1000000, 1124864, 1771561, 2000376, 2197000, 2299968, 2744000, 2985984, 3652264, 4096000, 4826809, 5451776, 6229504, 7189057, 7529536
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

Contains all sixth powers: suppose that y^2 = x^3 + t^6, then (y/t^3)^2 = (x/t^2)^3 + 1. The elliptic curve Y^2 = X^3 + 1 has rank 0 and the only rational points on it are (-1,0), (0,+-1), and (2,+-3), so y^2 = x^3 + t^6 has 5 solutions (-t^2,0), (0,+-t^3), and (2*t^2,+-3*t^3). - Jianing Song, Aug 24 2022

Crossrefs

Formula

a(n) = A356711(n)^3.

Extensions

Edited and extended by Ray Chandler, Jul 11 2010
a(31)-a(35) from Max Alekseyev, Jun 01 2023

A285955 Numbers a(n) = T(b(n))*sqrt(T(b(n))+1), where T(b(n)) is the triangular number of b(n)= A000217(b(n)) and b(n)=A006451(n). Also a(n) = y solutions of the Bachet Mordell equation y^2=x^3+K, where x= T(b(n)) = A006454(n) and K = (T(b(n)))^2= A285985(n).

Original entry on oeis.org

0, 6, 60, 1320, 12144, 262080, 2405970, 51894744, 476378760, 10274921850, 94320640056, 2034382775040, 18675010652760, 402797515372356, 3697557790357470, 79751873665825680, 732097767490332144, 15790468188346521390, 144951660405354891060, 3126432949419110989944
Offset: 0

Views

Author

Vladimir Pletser, Apr 29 2017

Keywords

Comments

Numbers a(n) which are the products of the triangular number T(b(n)) and the square root of this triangular number plus one, sqrt(T(b(n))+1), where b(n) is the sequence A006451(n) of numbers n such that T(n)+1 is a square.
This sequence a(n) gives also the y solutions of the 3rd degree Diophantine Bachet-Mordell equation y^2=x^3+K, with x= T(b(n)) = A006454(n) and K = (T(b(n)))^2 = A285985(n), where T(b(n)) is the triangular number of b(n)= A006451(n).
Also: A000217(A006451(n)) * sqrt(A000217(A006451(n))+1).

Examples

			For n=2, b(n)=5, a(n)=60.
For n=5, b(n)=90, a(n)= 262080.
For n = 3, A006451(n) = 15. Therefore, A000217(A006451(n)) = A000217(15) = 120. This gives A000217(A006451(n)) * sqrt(A000217(A006451(n)) + 1) = 120 * sqrt(120 + 1) = 1320. - _David A. Corneth_, Apr 29 2017
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print (‘0,0’,’1,6’,’2,60’); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=(b*(b+1)/2)* sqrt((b*(b+1)/2)+1); print(n,a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do:

Formula

Since b(n) = 8*sqrt(T(b(n-2))+1)+ b(n-4) = 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-1)=-1, b(0)=0, b(1)=2, b(2)=5 (see A006451) and a(n) = T(b(n))*sqrt(T(b(n))+1) (this sequence), one has :
a(n) = ([8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)]*[ 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)* sqrt(([8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)]*[ 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)+1).
Empirical g.f.: 6*x*(1 - x)*(1 + 11*x + 27*x^2 + 11*x^3 + x^4) / ((1 + 14*x - x^2)*(1 + 2*x - x^2)*(1 - 2*x - x^2)*(1 - 14*x - x^2)). - Colin Barker, Apr 30 2017
Showing 1-10 of 44 results. Next