cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 59 results. Next

A143615 Triangle A054521 * A000005 as a vector.

Original entry on oeis.org

1, 1, 3, 3, 8, 3, 14, 7, 14, 8, 27, 7, 35, 12, 20, 18, 50, 11, 58, 16, 35, 24, 74, 15, 68, 29, 54, 29, 101, 15, 111, 39, 64, 41, 84, 26, 140, 47, 78, 40, 158, 24, 168, 51, 75, 61, 186, 34, 170, 49, 111, 66, 217, 39, 160, 65, 131, 80, 247, 32, 261, 84, 122, 92, 197, 45, 292, 92, 162, 60, 312, 55, 326, 104, 135, 106, 263, 55, 356, 85, 206
Offset: 1

Views

Author

Gary W. Adamson, Aug 27 2008

Keywords

Examples

			a(8) = 7 since the relative primes of 8 are (1, 3, 5, 7). a(8) = d(1) + d(3) + d(5) + d(7) = 1 + 2 + 2 + 2. Or, a(8) = 7 = (1, 0, 1, 0, 1, 0, 1, 0) dot (1, 2, 2, 3, 2, 4, 2, 4), where (1, 0, 1, 0, 1, 0, 1, 0) = row 8 of triangle A054521 and d(n) = (1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2,...).
a(7) = 14 = (1, 1, 1, 1, 1, 1, 0) dot (1, 2, 2, 3, 2, 4, 2) = (d(1) + d(2) + d(3) + d(4) + d(5) + d(6)).
		

Crossrefs

Programs

  • Maple
    A143615 := proc(n)
        local a,m;
        a := 0 ;
        for m from 1 to n do
            if gcd(m,n) = 1 then
            a := a+numtheory[tau](m) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 08 2012

Formula

Triangle A054521 * A000005 as a vector; where 1's indicate the relative primes of n by rows and A000005 = d(n): (1, 2, 2, 3, 2, 4, 2, 4, 3,...)
a(n) = Sum_{ m=1..n and gcd(n,m)=1 } tau(m), where tau(m)=A000005(m). A211932(n)+a(n) = A006218(n). - Naohiro Nomoto, Aug 05 2012

Extensions

More terms from Naohiro Nomoto, Aug 05 2012

A143620 Triangle read by rows, square of A054521, 1<=k<=n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 4, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 6, 2, 2, 1, 1, 0, 0, 4, 3, 2, 2, 1, 1, 0, 0, 6, 2, 4, 2, 2, 1, 1, 0, 0, 4, 3, 1, 2, 2, 1, 1, 1, 0, 0, 10, 4, 5, 3, 4, 1, 3, 1, 1, 0, 0, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0
Offset: 1

Views

Author

Gary W. Adamson, Aug 27 2008

Keywords

Comments

Left border = phi(n), A000010.
Row sums = A053570: (1, 1, 2, 3, 6, 5, 12, 13,...).

Examples

			First few rows of the triangle =
1;
1, 0;
2, 0, 0;
2, 1, 0, 0;
4, 1, 1, 0, 0;
2, 1, 1, 1, 0, 0;
6, 2, 2, 1, 1, 0, 0;
4, 3, 2, 2, 1, 1, 0, 0;
6, 2, 4, 2, 2, 1, 1, 0, 0;
...
		

Crossrefs

Formula

Triangle read by rows, square of A054521, 1<=k<=n

A144379 Triangle read by rows, first n terms of an array formed by A054521 * A054521(transform).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 4, 2, 6, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 2, 1, 3, 2, 4, 3, 6, 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 1, 1, 1, 1, 1, 2, 2, 3, 3, 2, 3, 4, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 1, 1, 1, 2, 2, 2, 3, 3, 2, 3, 4, 3, 5
Offset: 1

Views

Author

Gary W. Adamson, Sep 19 2008

Keywords

Comments

Right border = phi(n): (1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10,...).
Row sums = A125728: (1, 2, 4, 5, 10, 7, 18, 16, 23,...) = the number of positive integers less <=k coprime to both k and n.

Examples

			A054521 * A054521(transform) =
1, 1, 1, 1, 1, 1, 1,...
1, 1, 1, 1, 1, 1, 1,...
1, 1, 2, 1, 2, 1, 2,...
1, 1, 1, 2, 2, 1, 2,...
1, 1, 2, 2, 4, 1, 4,...
...
Then extract the lower half of the array including the diagonal, A000010, phi(n); getting triangle A144379:
1;
1, 1;
1, 1, 2
1, 1, 1, 2;
1, 1, 2, 2, 4;
1, 1, 1, 1, 1, 2;
1, 1, 2, 2, 4, 2, 6;
1, 1, 1, 2, 2, 2, 3, 4;
1, 1, 2, 1, 3, 2, 4, 3, 6;
1, 1, 1, 2, 2, 1, 2, 3, 2, 4;
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10;
...
		

Crossrefs

Formula

Given A054521 as an infinite lower triangular matrix, perform A054521(transform). Multiply the result by A054521 getting an array, then extract the first n terms of each row to form a new triangle.

A127447 Triangle defined by the matrix product A127446 * A054521, read by rows 1<=k<=n.

Original entry on oeis.org

1, 4, 0, 6, 3, 0, 12, 0, 4, 0, 10, 5, 5, 5, 0, 24, 6, 0, 0, 6, 0, 14, 7, 7, 7, 7, 7, 0, 32, 0, 16, 0, 8, 0, 8, 0, 27, 18, 0, 9, 9, 0, 9, 9, 0, 40, 10, 20, 10, 0, 0, 10, 0, 10, 0, 22, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 72, 12, 12, 0, 24, 0
Offset: 1

Views

Author

Gary W. Adamson, Jan 14 2007

Keywords

Examples

			First few rows of the triangle are:
1;
4, 0;
6, 3, 0;
12, 0, 4, 0;
10, 5, 5, 5, 0;
24, 6, 0, 0, 6, 0;
14, 7, 7, 7, 7, 7, 0;
32, 0, 16, 0, 8 0, 8, 0;
...
		

Crossrefs

Cf. A038040 (column k=1), A000290 (row sums), A127446, A054521.

Programs

Formula

T(n,k) = Sum_{j=k..n} A127446(n,j) * A054521(j,k).

A143614 Triangle read by rows: A054521 * A051731 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 2, 0, 1, 0, 4, 2, 1, 1, 0, 2, 0, 0, 0, 1, 0, 6, 3, 2, 1, 1, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 6, 3, 0, 2, 1, 0, 1, 1, 0, 4, 0, 2, 0, 0, 0, 1, 0, 1, 0, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 0, 4, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 6, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Gary W. Adamson, Aug 27 2008

Keywords

Comments

Left border = phi(n), A000010: (1, 1, 2, 2, 4, 2, 6,...).
Row sums = A143615: (1, 1, 3, 3, 8, 3, 14, 7,...).

Examples

			First few rows of the triangle =
1;
1, 0;
2, 1, 0;
2, 0, 1, 0;
4, 2, 1, 1, 0;
2, 0, 0, 0, 1, 0;
6, 3, 2, 1, 1, 1, 0;
4, 0, 1, 0, 1, 0, 1, 0;
6, 3, 0, 2, 1, 0, 1, 1, 0;
...
		

Crossrefs

Formula

A054521 records the relative primes of n, indicated by a 1's in row n, 0 otherwise. A051731 = the inverse Moebius transform, in which 1's by rows indicate the divisors of n, 0 otherwise.

Extensions

a(96) and a(101) split by Georg Fischer, May 29 2023

A143655 Triangle read by rows, primes not dividing n; A054521 * (A061397 * 0^(n-k)), 1<=k<=n.

Original entry on oeis.org

0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 2, 3, 0, 5, 0, 0, 0, 0, 3, 0, 5, 0, 7, 0, 0, 2, 0, 0, 5, 0, 7, 0, 0, 0, 0, 3, 0, 0, 0, 7, 0, 0, 0, 0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 7, 0, 0, 0, 11, 0, 0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, 0, 11, 0
Offset: 1

Views

Author

Gary W. Adamson, Aug 28 2008

Keywords

Comments

Row sums = A066911: (0, 0, 2, 3, 5, 5, 10, 15, 14,....)

Examples

			First few rows of the triangle =
0;
0, 0;
0, 2, 0;
0, 0, 3, 0;
0, 2, 3, 0, 0;
0, 0, 0, 0, 5, 0;
0, 2, 3, 0, 5, 0, 0;
0, 0, 3, 0, 5, 0, 7, 0;
...
Row 8 has 3 primes < 8 not dividing 8: (3, 5, 7); where (3 + 5 + 7) = A066911(8).
		

Crossrefs

Formula

Triangle read by rows, A054521 * (A061397 * 0^(n-k)), 1<=k<=n. T(n,k) = prime if k is prime but does not divide n. A054521 = a triangle with row sums phi(n). A061397 = (0, 2, 3, 0, 5, 0, 7,...)

A157030 Triangle read by rows, A156834 * A054521.

Original entry on oeis.org

1, 2, 0, 2, 1, 0, 4, 0, 1, 0, 2, 1, 1, 1, 0, 8, 3, 0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 0, 10, 0, 5, 0, 1, 0, 1, 0, 8, 7, 0, 1, 1, 0, 1, 1, 0, 12, 5, 6, 5, 0, 0, 10, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 34, 10, 10, 0, 7, 0, 10, 0, 0, 1, 0
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Feb 21 2009

Keywords

Comments

Left border = A157019: (1, 2, 2, 4, 2, 8, 2, 10,...).

Examples

			First few rows of the triangle =
1;
2, 0;
2, 1, 0;
4, 0, 1, 0;
2, 1, 1, 1, 0;
8, 3, 0, 0, 1, 0;
2, 1, 1, 1, 1, 1, 0;
10, 0, 5, 0, 1, 0, 1, 0;
8, 7, 0, 1, 1, 0, 1, 1, 0;
12, 5, 6, 5, 0, 0, 10, 1, 0;
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
34, 10, 10, 0, 7, 0, 1, 0, 0, 0, 1, 0;
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
...
		

Crossrefs

Cf. A156834 (row sums), A054521.

Formula

Triangle read by rows, A156834 * A054521; as infinite lower triangular matrices.

A157031 Triangle A054521 * A157019, where A054521 = an infinite lower triangular matrix and A157019 = a vector [1, 2, 2, 4, 2, 8, 2, 10, 8, ...].

Original entry on oeis.org

1, 1, 3, 3, 9, 3, 19, 7, 21, 13, 51, 7, 87, 17, 39, 51, 175, 11, 239, 21, 169, 111, 415, 15, 489, 185, 313, 219, 1017, 15, 1413, 283, 763, 415, 981, 513, 3057, 839, 1259, 497, 4425, 93, 5605, 893, 1311, 2259, 7505, 521, 8267, 1429, 5473, 3311, 13821, 1449, 11135, 4095
Offset: 1

Views

Author

Gary W. Adamson & Mats Granvik, Feb 21 2009

Keywords

Examples

			a(4) = 3 = (1, 0, 1, 0) dot (1, 2, 2, 4) = (1 + 0 + 2 + 0), where (1, 0, 1, 0) equals row 4 of triangle A054521.
		

Crossrefs

Programs

A164295 Triangle T(n,k) read by rows: sum of the triangles A054521 and A051731.

Original entry on oeis.org

2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Roger L. Bagula and Mats Granvik, Aug 12 2009

Keywords

Comments

Zeros in the table, for example T(6,4)=0, indicate that the row and column indices n and k are not coprime and in addition that there is a nonzero remainder n (mod k).

Examples

			The table starts
2
2, 1
2, 1, 1
2, 1, 1, 1
2, 1, 1, 1, 1
2, 1, 1, 0, 1, 1
2, 1, 1, 1, 1, 1, 1
2, 1, 1, 1, 1, 0, 1, 1
2, 1, 1, 1, 1, 0, 1, 1, 1
2, 1, 1, 0, 1, 0, 1, 0, 1, 1
		

Crossrefs

Programs

  • Maple
    A054521 := proc(n,k) if gcd(n,k) = 1 then 1; else 0 ; fi; end:
    A051731 := proc(n,k) if (n mod k) = 0 then 1; else 0 ; fi; end:
    A164295 := proc(n,k) A054521(n,k)+A051731(n,k) ; end: seq(seq(A164295(n,k),k=1..n),n=1..10) ;
  • Mathematica
    T[n_, k_] = If[Mod[n, k] == 0, 1, 0] + If[GCD[n, k] == 1, 1, 0];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}]; Flatten[%]

Formula

T(n,k) = A054521(n,k) + A051731(n,k), 1<=k<=n, 1<=n.

Extensions

Edited by the Associate Editors of the OEIS, Aug 28 2009

A349298 Positions k in row n of triangles S(n,k) = T(n,k) = 0, where A054521 = S and A349297 = T, or 0 if there are no such k.

Original entry on oeis.org

0, 0, 0, 0, 5, 0, 7, 0, 0, 5, 11, 0, 13, 7, 5, 10, 0, 17, 0, 19, 5, 15, 7, 14, 11, 23, 0, 5, 10, 15, 20, 25, 13, 0, 7, 21, 29, 5, 25, 31, 0, 11, 22, 17, 5, 7, 10, 14, 15, 20, 21, 25, 28, 30, 35, 0, 37, 19, 13, 26, 5, 15, 25, 35, 41, 7, 35, 43, 11, 33, 5, 10, 20, 25, 35, 40
Offset: 1

Views

Author

Michael De Vlieger, Nov 13 2021

Keywords

Comments

Row n is a list of k for which A349297 NOR A054521 is true.
Row p > 3 for p prime has the single term p.
Nonzero terms in this sequence are of the form k*m > 1, where 3-smooth k > 1 in A003586 and 5-rough m > 1 in A007310, with m mod 6 = +/- 1.

Examples

			Table T(n,k) for 1 <= n <= 16, replacing 0 with "." and 1 with "*", showing terms in row n of this sequence. Rows with no terms are replaced by 0:
1:   .
2:   .  *
3:   .  .  *
4:   .  *  .  *
5:   .  .  .  .  5
6:   .  *  *  *  .  *
7:   .  .  .  .  .  .  7
8:   .  *  .  *  .  *  .  *
9:   .  .  *  .  .  *  .  .  *
10:  .  *  .  *  5  *  .  *  .  *
11:  .  .  .  .  .  .  .  .  .  . 11
12:  .  *  *  *  .  *  .  *  *  *  .  *
13:  .  .  .  .  .  .  .  .  .  .  .  . 13
14:  .  *  .  *  .  *  7  *  .  *  .  *  .  *
15:  .  .  *  .  5  *  .  .  * 10  .  *  .  .  *
16:  .  *  .  *  .  *  .  *  .  *  .  *  .  *  .  *
---------------------------------------------------
n\k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16
Hence, row 5 = {5}, row 7 = {7}, row 11 = {11}, row 13 = {13}, row 14 = {7}, row 15 = {5, 10}, and all other rows 1 <= n <= 16 have no terms, thus are assigned 0 by definition.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 45}, Table[If[Length[#] == 0, {0}, #] &@ Select[Array[# Boole[Xor[Or[Mod[#, 2] == Mod[n, 2] == 0, Mod[#, 3] == Mod[n, 3] == 0], GCD[n, #] != 1]] &, n], # > 0 &], {n, nn}]] // Flatten (* Michael De Vlieger, Dec 08 2021 *)
    With[{s = Merge[Map[#1 -> #2 & @@ # &, Position[ImageData[#], 0.]], Identity]}, Array[If[KeyExistsQ[s, #], Lookup[s, #], {0}] &, ImageDimensions[#][[-1]]] // Flatten] &@ Import["https://oeis.org/A349298/a349298.png"] (* Generate 1024 rows stored in the bitmap image, Michael De Vlieger, Dec 08 2021 *)
Showing 1-10 of 59 results. Next