Original entry on oeis.org
1, 1, 3, 3, 8, 3, 14, 7, 14, 8, 27, 7, 35, 12, 20, 18, 50, 11, 58, 16, 35, 24, 74, 15, 68, 29, 54, 29, 101, 15, 111, 39, 64, 41, 84, 26, 140, 47, 78, 40, 158, 24, 168, 51, 75, 61, 186, 34, 170, 49, 111, 66, 217, 39, 160, 65, 131, 80, 247, 32, 261, 84, 122, 92, 197, 45, 292, 92, 162, 60, 312, 55, 326, 104, 135, 106, 263, 55, 356, 85, 206
Offset: 1
a(8) = 7 since the relative primes of 8 are (1, 3, 5, 7). a(8) = d(1) + d(3) + d(5) + d(7) = 1 + 2 + 2 + 2. Or, a(8) = 7 = (1, 0, 1, 0, 1, 0, 1, 0) dot (1, 2, 2, 3, 2, 4, 2, 4), where (1, 0, 1, 0, 1, 0, 1, 0) = row 8 of triangle A054521 and d(n) = (1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2,...).
a(7) = 14 = (1, 1, 1, 1, 1, 1, 0) dot (1, 2, 2, 3, 2, 4, 2) = (d(1) + d(2) + d(3) + d(4) + d(5) + d(6)).
-
A143615 := proc(n)
local a,m;
a := 0 ;
for m from 1 to n do
if gcd(m,n) = 1 then
a := a+numtheory[tau](m) ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Aug 08 2012
A143620
Triangle read by rows, square of A054521, 1<=k<=n.
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 4, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 6, 2, 2, 1, 1, 0, 0, 4, 3, 2, 2, 1, 1, 0, 0, 6, 2, 4, 2, 2, 1, 1, 0, 0, 4, 3, 1, 2, 2, 1, 1, 1, 0, 0, 10, 4, 5, 3, 4, 1, 3, 1, 1, 0, 0, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0
Offset: 1
First few rows of the triangle =
1;
1, 0;
2, 0, 0;
2, 1, 0, 0;
4, 1, 1, 0, 0;
2, 1, 1, 1, 0, 0;
6, 2, 2, 1, 1, 0, 0;
4, 3, 2, 2, 1, 1, 0, 0;
6, 2, 4, 2, 2, 1, 1, 0, 0;
...
A144379
Triangle read by rows, first n terms of an array formed by A054521 * A054521(transform).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 4, 2, 6, 1, 1, 1, 2, 2, 2, 3, 4, 1, 1, 2, 1, 3, 2, 4, 3, 6, 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 1, 1, 1, 1, 1, 2, 2, 3, 3, 2, 3, 4, 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 1, 1, 1, 2, 2, 2, 3, 3, 2, 3, 4, 3, 5
Offset: 1
A054521 * A054521(transform) =
1, 1, 1, 1, 1, 1, 1,...
1, 1, 1, 1, 1, 1, 1,...
1, 1, 2, 1, 2, 1, 2,...
1, 1, 1, 2, 2, 1, 2,...
1, 1, 2, 2, 4, 1, 4,...
...
Then extract the lower half of the array including the diagonal, A000010, phi(n); getting triangle A144379:
1;
1, 1;
1, 1, 2
1, 1, 1, 2;
1, 1, 2, 2, 4;
1, 1, 1, 1, 1, 2;
1, 1, 2, 2, 4, 2, 6;
1, 1, 1, 2, 2, 2, 3, 4;
1, 1, 2, 1, 3, 2, 4, 3, 6;
1, 1, 1, 2, 2, 1, 2, 3, 2, 4;
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10;
...
A127447
Triangle defined by the matrix product A127446 * A054521, read by rows 1<=k<=n.
Original entry on oeis.org
1, 4, 0, 6, 3, 0, 12, 0, 4, 0, 10, 5, 5, 5, 0, 24, 6, 0, 0, 6, 0, 14, 7, 7, 7, 7, 7, 0, 32, 0, 16, 0, 8, 0, 8, 0, 27, 18, 0, 9, 9, 0, 9, 9, 0, 40, 10, 20, 10, 0, 0, 10, 0, 10, 0, 22, 11, 11, 11, 11, 11, 11, 11, 11, 11, 0, 72, 12, 12, 0, 24, 0
Offset: 1
First few rows of the triangle are:
1;
4, 0;
6, 3, 0;
12, 0, 4, 0;
10, 5, 5, 5, 0;
24, 6, 0, 0, 6, 0;
14, 7, 7, 7, 7, 7, 0;
32, 0, 16, 0, 8 0, 8, 0;
...
-
A054521 := proc(n, k) if igcd(n,k) = 1 then 1; else 0; fi; end:
A127447 := proc(n,k)
add( A127446(n,j)*A054521(j,k),j=k..n) ;
end proc:
seq(seq(A127447(n,m),m=1..n),n=1..12) ; # R. J. Mathar, Nov 08 2011
A143614
Triangle read by rows: A054521 * A051731 as infinite lower triangular matrices.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 2, 0, 1, 0, 4, 2, 1, 1, 0, 2, 0, 0, 0, 1, 0, 6, 3, 2, 1, 1, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 6, 3, 0, 2, 1, 0, 1, 1, 0, 4, 0, 2, 0, 0, 0, 1, 0, 1, 0, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 0, 4, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 6, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0
Offset: 1
First few rows of the triangle =
1;
1, 0;
2, 1, 0;
2, 0, 1, 0;
4, 2, 1, 1, 0;
2, 0, 0, 0, 1, 0;
6, 3, 2, 1, 1, 1, 0;
4, 0, 1, 0, 1, 0, 1, 0;
6, 3, 0, 2, 1, 0, 1, 1, 0;
...
A143655
Triangle read by rows, primes not dividing n; A054521 * (A061397 * 0^(n-k)), 1<=k<=n.
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 2, 3, 0, 5, 0, 0, 0, 0, 3, 0, 5, 0, 7, 0, 0, 2, 0, 0, 5, 0, 7, 0, 0, 0, 0, 3, 0, 0, 0, 7, 0, 0, 0, 0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 7, 0, 0, 0, 11, 0, 0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 0, 0, 0, 3, 0, 5, 0, 0, 0, 0, 0, 11, 0
Offset: 1
First few rows of the triangle =
0;
0, 0;
0, 2, 0;
0, 0, 3, 0;
0, 2, 3, 0, 0;
0, 0, 0, 0, 5, 0;
0, 2, 3, 0, 5, 0, 0;
0, 0, 3, 0, 5, 0, 7, 0;
...
Row 8 has 3 primes < 8 not dividing 8: (3, 5, 7); where (3 + 5 + 7) = A066911(8).
Original entry on oeis.org
1, 2, 0, 2, 1, 0, 4, 0, 1, 0, 2, 1, 1, 1, 0, 8, 3, 0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 0, 10, 0, 5, 0, 1, 0, 1, 0, 8, 7, 0, 1, 1, 0, 1, 1, 0, 12, 5, 6, 5, 0, 0, 10, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 34, 10, 10, 0, 7, 0, 10, 0, 0, 1, 0
Offset: 1
First few rows of the triangle =
1;
2, 0;
2, 1, 0;
4, 0, 1, 0;
2, 1, 1, 1, 0;
8, 3, 0, 0, 1, 0;
2, 1, 1, 1, 1, 1, 0;
10, 0, 5, 0, 1, 0, 1, 0;
8, 7, 0, 1, 1, 0, 1, 1, 0;
12, 5, 6, 5, 0, 0, 10, 1, 0;
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
34, 10, 10, 0, 7, 0, 1, 0, 0, 0, 1, 0;
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
...
A157031
Triangle A054521 * A157019, where A054521 = an infinite lower triangular matrix and A157019 = a vector [1, 2, 2, 4, 2, 8, 2, 10, 8, ...].
Original entry on oeis.org
1, 1, 3, 3, 9, 3, 19, 7, 21, 13, 51, 7, 87, 17, 39, 51, 175, 11, 239, 21, 169, 111, 415, 15, 489, 185, 313, 219, 1017, 15, 1413, 283, 763, 415, 981, 513, 3057, 839, 1259, 497, 4425, 93, 5605, 893, 1311, 2259, 7505, 521, 8267, 1429, 5473, 3311, 13821, 1449, 11135, 4095
Offset: 1
a(4) = 3 = (1, 0, 1, 0) dot (1, 2, 2, 4) = (1 + 0 + 2 + 0), where (1, 0, 1, 0) equals row 4 of triangle A054521.
A164295
Triangle T(n,k) read by rows: sum of the triangles A054521 and A051731.
Original entry on oeis.org
2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1
Offset: 1
The table starts
2
2, 1
2, 1, 1
2, 1, 1, 1
2, 1, 1, 1, 1
2, 1, 1, 0, 1, 1
2, 1, 1, 1, 1, 1, 1
2, 1, 1, 1, 1, 0, 1, 1
2, 1, 1, 1, 1, 0, 1, 1, 1
2, 1, 1, 0, 1, 0, 1, 0, 1, 1
-
A054521 := proc(n,k) if gcd(n,k) = 1 then 1; else 0 ; fi; end:
A051731 := proc(n,k) if (n mod k) = 0 then 1; else 0 ; fi; end:
A164295 := proc(n,k) A054521(n,k)+A051731(n,k) ; end: seq(seq(A164295(n,k),k=1..n),n=1..10) ;
-
T[n_, k_] = If[Mod[n, k] == 0, 1, 0] + If[GCD[n, k] == 1, 1, 0];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}]; Flatten[%]
Edited by the Associate Editors of the OEIS, Aug 28 2009
A349298
Positions k in row n of triangles S(n,k) = T(n,k) = 0, where A054521 = S and A349297 = T, or 0 if there are no such k.
Original entry on oeis.org
0, 0, 0, 0, 5, 0, 7, 0, 0, 5, 11, 0, 13, 7, 5, 10, 0, 17, 0, 19, 5, 15, 7, 14, 11, 23, 0, 5, 10, 15, 20, 25, 13, 0, 7, 21, 29, 5, 25, 31, 0, 11, 22, 17, 5, 7, 10, 14, 15, 20, 21, 25, 28, 30, 35, 0, 37, 19, 13, 26, 5, 15, 25, 35, 41, 7, 35, 43, 11, 33, 5, 10, 20, 25, 35, 40
Offset: 1
Table T(n,k) for 1 <= n <= 16, replacing 0 with "." and 1 with "*", showing terms in row n of this sequence. Rows with no terms are replaced by 0:
1: .
2: . *
3: . . *
4: . * . *
5: . . . . 5
6: . * * * . *
7: . . . . . . 7
8: . * . * . * . *
9: . . * . . * . . *
10: . * . * 5 * . * . *
11: . . . . . . . . . . 11
12: . * * * . * . * * * . *
13: . . . . . . . . . . . . 13
14: . * . * . * 7 * . * . * . *
15: . . * . 5 * . . * 10 . * . . *
16: . * . * . * . * . * . * . * . *
---------------------------------------------------
n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Hence, row 5 = {5}, row 7 = {7}, row 11 = {11}, row 13 = {13}, row 14 = {7}, row 15 = {5, 10}, and all other rows 1 <= n <= 16 have no terms, thus are assigned 0 by definition.
-
With[{nn = 45}, Table[If[Length[#] == 0, {0}, #] &@ Select[Array[# Boole[Xor[Or[Mod[#, 2] == Mod[n, 2] == 0, Mod[#, 3] == Mod[n, 3] == 0], GCD[n, #] != 1]] &, n], # > 0 &], {n, nn}]] // Flatten (* Michael De Vlieger, Dec 08 2021 *)
With[{s = Merge[Map[#1 -> #2 & @@ # &, Position[ImageData[#], 0.]], Identity]}, Array[If[KeyExistsQ[s, #], Lookup[s, #], {0}] &, ImageDimensions[#][[-1]]] // Flatten] &@ Import["https://oeis.org/A349298/a349298.png"] (* Generate 1024 rows stored in the bitmap image, Michael De Vlieger, Dec 08 2021 *)
Showing 1-10 of 59 results.
Comments