A054533 Triangular array giving Ramanujan sum T(n,k) = c_n(k) = Sum_{m=1..n, (m,n)=1} exp(2 Pi i m k / n) for n >= 1 and 1 <= k <= n.
1, -1, 1, -1, -1, 2, 0, -2, 0, 2, -1, -1, -1, -1, 4, 1, -1, -2, -1, 1, 2, -1, -1, -1, -1, -1, -1, 6, 0, 0, 0, -4, 0, 0, 0, 4, 0, 0, -3, 0, 0, -3, 0, 0, 6, 1, -1, 1, -1, -4, -1, 1, -1, 1, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10, 0, 2, 0, -2, 0, -4, 0, -2, 0, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12, 1
Offset: 1
Examples
Triangle begins 1; -1, 1; -1, -1, 2; 0, -2, 0, 2; -1, -1, -1, -1, 4; 1, -1, -2, -1, 1, 2; -1, -1, -1, -1, -1, -1, 6; 0, 0, 0, -4, 0, 0, 0, 4; 0, 0, -3, 0, 0, -3, 0, 0, 6; 1, -1, 1, -1, -4, -1, 1, -1, 1, 4; -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 10; 0, 2, 0, -2, 0, -4, 0, -2, 0, 2, 0, 4; -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12; ... [Edited by _Jon E. Schoenfield_, Jan 03 2017] Periodicity and multiplicativity: c_6(k) = c_2(k)*c_3(k), e.g.: 2 = c_6(6) = c_2(6)*c_3(6) = c_2(2)*c_3(3) = 1*2 = 2. - _Wolfdieter Lang_, Jan 05 2017
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 160-161.
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 137-139.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Oxford Science Publications, Clarendon Press, Oxford, 2003, pp. 237-238.
Links
- Seiichi Manyama, Rows n=1..140 of triangle, flattened (Rows 1..50 from T. D. Noe)
- Tom M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41 (1972), 281-293.
- Eckford Cohen, A class of arithmetic functions, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944.
- A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), 173-188.
- M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.
- Emiliano Gagliardo, Le funzioni simmetriche semplici delle radici n-esime primitive dell'unità, Bollettino dell'Unione Matematica Italiana Serie 3, 8(3) (1953), 269-273.
- Otto Hölder, Zur Theorie der Kreisteilungsgleichung K_m(x)=0, Prace mat.-fiz. 43 (1936), 13-23.
- Peter H. van der Kamp, On the Fourier transform of the greatest common divisor, Integers 13 (2013), #A24. [See Section 3 for historical remarks.]
- J. C. Kluyver, Some formulae concerning the integers less than n and prime to n, in: KNAW, Proceedings, 9 I, 1906, Amsterdam, 1906, pp. 408-414. [See bottom of p. 410, where the author proves that Sum cos(2*Pi*q*v/n) = mu(n/D) * phi(n) /phi(n/D), where D is the gcd of n and q. The summation is over integers v "less than n and prime to n" (top of p. 408).]
- C. A. Nicol, On restricted partitions and a generalization of the Euler phi number and the Moebius function, Proc. Natl. Acad. Sci. USA 39(9) (1953), 963-968.
- C. A. Nicol and H. S. Vandiver, A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Natl. Acad. Sci. USA 40(9) (1954), 825-835.
- K. G. Ramanathan, Some applications of Ramanujan's trigonometrical sum C_m(n), Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69.
- Srinivasa Ramanujan, On certain trigonometric sums and their applications in the theory of numbers, Trans. Camb. Phil. Soc. 22 (1918), 259-276.
- R. D. von Sterneck, Ein Analogon zur additiven Zahlentheorie, Sitzungsber. Akad. Wiss. Sapientiae Math.-Naturwiss. Kl. 111 (1902), 1567-1601 (Abt. IIa).
- R. D. von Sterneck, Über ein Analogon zur additiven Zahlentheorie, Jahresbericht der Deutschen Mathematiker-Vereinigung 12 (1903), 110-113.
- M. V. Subbarao, The Brauer-Rademacher identity, Amer. Math. Monthly 72 (1965), 135-138.
- Wikipedia, Ramanujan's sum.
- Wikipedia, Robert Daublebsky von Sterneck der Jüngere.
- Aurel Wintner, On a statistics of the Ramanujan sums, Amer. J. Math., 64(1) (1942), 106-114.
Programs
-
Mathematica
c[k_, n_] := Sum[ If[GCD[m, k] == 1, Exp[2 Pi*I*m*n/k], 0], {m, 1, k}]; A054533 = Flatten[ Table[c[n, k] // FullSimplify, {n, 1, 14}, {k, 1, n}] ] (* Jean-François Alcover, Jun 27 2012 *) (* to get the triangle in the example above *) FormTable[Table[c[n, k] // FullSimplify, {n, 1, 13}, {k, 1, n}]] (* Petros Hadjicostas, Jul 28 2019 *)
-
PARI
T(n,k) = sumdiv(gcd(n,k), d, d*moebius(n/d)); tabl(nn) = {for(n=1, nn, for(k=1, n, print1(T(n,k), ", "); ); print(); ); }; \\ Michel Marcus, Jun 14 2018
Formula
T(n, k) = Sum_{m=1..n, gcd(m,n) = 1} exp(2*Pi*i*m*k / n), n >= 1, 1 <= k <= n, where i is the imaginary unit.
T(n, k) = Sum_{d | gcd(n,k)} d*Moebius(n/d), n >= 1, 1 <= k <= n.
Extensions
Name edited by Petros Hadjicostas, Jul 27 2019
Comments