A054534 Square array giving Ramanujan sum T(n,k) = c_k(n) = Sum_{m=1..k, (m,k)=1} exp(2 Pi i m n / k), read by antidiagonals upwards (n >= 1, k >= 1).
1, 1, -1, 1, 1, -1, 1, -1, -1, 0, 1, 1, 2, -2, -1, 1, -1, -1, 0, -1, 1, 1, 1, -1, 2, -1, -1, -1, 1, -1, 2, 0, -1, -2, -1, 0, 1, 1, -1, -2, 4, -1, -1, 0, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, 1, 1, 2, 2, -1, 2, -1, -4, -3, -1, -1, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, 1, 1, -1, -2, -1, -1, 6, 0, 0, -1, -1, 2, -1, 1, -1, 2, 0, 4, -2, -1, 0, -3, -4, -1, 0, -1, 1
Offset: 1
Examples
Array T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows: 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, ... 1, 1, -1, -2, -1, -1, -1, 0, 0, -1, -1, ... 1, -1, 2, 0, -1, -2, -1, 0, -3, 1, -1, ... 1, 1, -1, 2, -1, -1, -1, -4, 0, -1, -1, ... 1, -1, -1, 0, 4, 1, -1, 0, 0, -4, -1, ... 1, 1, 2, -2, -1, 2, -1, 0, -3, -1, -1, ... 1, -1, -1, 0, -1, 1, 6, 0, 0, 1, -1, ... ...
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 160.
- H. Rademacher, Collected Papers of Hans Rademacher, vol. II, MIT Press, 1974, p. 435.
- S. Ramanujan, On Certain Trigonometrical Sums and their Applications in the Theory of Numbers, pp. 179-199 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea Publishing 2000.
- R. D. von Sterneck, Ein Analogon zur additiven Zahlentheorie, Sitzungsber. Acad. Wiss. Sapientiae Math.-Naturwiss. Kl. 111 (1902), 1567-1601 (Abt. IIa).
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
- Tom M. Apostol, Arithmetical properties of generalized Ramanujan sums, Pacific J. Math. 41 (1972), 281-293.
- Austrian Biographical Encyclopedia from 1815 onwards, Daublebsky von Sterneck, Robert.
- Eckford Cohen, A class of arithmetic functions, Proc. Natl. Acad. Sci. USA 41 (1955), 939-944.
- A. Elashvili, M. Jibladze, and D. Pataraia, Combinatorics of necklaces and "Hermite reciprocity", J. Algebraic Combin. 10 (1999), 173-188.
- M. L. Fredman, A symmetry relationship for a class of partitions, J. Combinatorial Theory Ser. A 18 (1975), 199-202.
- Emiliano Gagliardo, Le funzioni simmetriche semplici delle radici n-esime primitive dell'unità, Bollettino dell'Unione Matematica Italiana Serie 3, 8(3) (1953), 269-273.
- Otto Hölder, Zur Theorie der Kreisteilungsgleichung K_m(x)=0, Prace mat.-fiz. 43 (1936), 13-23.
- Peter H. van der Kamp, On the Fourier transform of the greatest common divisor, Integers 13 (2013), #A24. [See Section 3 for historical remarks.]
- C. A. Nicol, On restricted partitions and a generalization of the Euler phi number and the Moebius function, Proc. Natl. Acad. Sci. USA 39(9) (1953), 963-968.
- C. A. Nicol and H. S. Vandiver, A von Sterneck arithmetical function and restricted partitions with respect to a modulus, Proc. Natl. Acad. Sci. USA 40(9) (1954), 825-835.
- K. G. Ramanathan, Some applications of Ramanujan's trigonometrical sum C_m(n), Proc. Indian Acad. Sci., Sect. A 20 (1944), 62-69.
- Srinivasa Ramanujan, On certain trigonometric sums and their applications in the theory of numbers, Trans. Camb. Phil. Soc. 22 (1918), 259-276.
- M. V. Subbarao, The Brauer-Rademacher identity, Amer. Math. Monthly 72 (1965), 135-138.
- Wikipedia, Ramanujan's sum.
- Wikipedia, Robert Daublebsky von Sterneck der Jüngere.
- Aurel Wintner, On a statistics of the Ramanujan sums, Amer. J. Math., 64(1) (1942), 106-114.
Crossrefs
Programs
-
Mathematica
nmax = 14; mu[n_Integer] = MoebiusMu[n]; mu[] = 0; t[n, k_] := Total[ #*mu[k/#]& /@ Divisors[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 14 2011, after Pari *) TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 11}]] (* to print a table like the one in the example - Petros Hadjicostas, Jul 27 2019 *)
-
PARI
{T(n, k) = if( n<1 || k<1, 0, sumdiv( n, d, if( k%d==0, d * moebius(k / d))))} /* Michael Somos, Dec 05 2002 */
-
PARI
{T(n, k) = if( n<1 || k<1, 0, polsym( polcyclo( k), n) [n + 1])} /* Michael Somos, Mar 21 2011 */
-
PARI
/*To get an array like in the example above using Michael Somos' programs:*/ {for (n=1, 20, for (k=1, 40, print1(T(n,k), ","); ); print(); ); } /* Petros Hadjicostas, Jul 27 2019 */
Formula
T(n, 1) = c_1(n) = 1. T(n, 2) = c_2(n) = A033999(n). T(n, 3) = c_3(n) = A099837(n) if n>1. T(n, 4) = c_4(n) = A176742(n) if n>1. T(n, 6) = c_6(n) = A100051(n) if n>1. - Michael Somos, Mar 21 2011
T(1, n) = c_n(1) = A008683(n). T(2, n) = c_n(2) = A086831(n). T(3, n) = c_n(3) = A085097(n). T(4, n) = c_n(4) = A085384(n). T(5, n) = c_n(5) = A085639(n). T(6, n) = c_n(6) = A085906(n). - Michael Somos, Mar 21 2011
Lambert series and a consequence: Sum_{k >= 1} c_k(n) * z^k / (1 - z^k) = Sum_{s|n} s * z^s and -Sum_{k >= 1} (c_k(n) / k) * log(1 - z^k) = Sum_{s|n} z^s for |z| < 1 (using the principal value of the logarithm). - Petros Hadjicostas, Aug 15 2019
Comments