A054548 Triangular array giving number of labeled graphs on n unisolated nodes and k=0...n*(n-1)/2 edges.
1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 3, 16, 15, 6, 1, 0, 0, 0, 30, 135, 222, 205, 120, 45, 10, 1, 0, 0, 0, 15, 330, 1581, 3760, 5715, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 0, 0, 0, 0, 315, 4410, 23604, 73755, 159390, 259105, 331716, 343161, 290745, 202755, 116175
Offset: 0
Examples
From _Gus Wiseman_, Feb 14 2024: (Start) Triangle begins: 1 0 0 1 0 0 3 1 0 0 3 16 15 6 1 0 0 0 30 135 222 205 120 45 10 1 Row n = 4 counts the following graphs: . . 12-34 12-13-14 12-13-14-23 12-13-14-23-24 12-13-14-23-24-34 13-24 12-13-24 12-13-14-24 12-13-14-23-34 14-23 12-13-34 12-13-14-34 12-13-14-24-34 12-14-23 12-13-23-24 12-13-23-24-34 12-14-34 12-13-23-34 12-14-23-24-34 12-23-24 12-13-24-34 13-14-23-24-34 12-23-34 12-14-23-24 12-24-34 12-14-23-34 13-14-23 12-14-24-34 13-14-24 12-23-24-34 13-23-24 13-14-23-24 13-23-34 13-14-23-34 13-24-34 13-14-24-34 14-23-24 13-23-24-34 14-23-34 14-23-24-34 14-24-34 (End)
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, Page 29, Exercise 1.4.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10700
- A. N. Bhavale and B. N. Waphare, Basic retracts and counting of lattices, Australasian J. of Combinatorics (2020) Vol. 78, No. 1, 73-99.
- Ashok Nivrutti Bhavale, Equivalence of labeled graphs and lattices, arXiv:2501.05064 [math.CO], 2025. See pp. 1-2, 13.
- R. Tauraso, Edge cover time for regular graphs, JIS 11 (2008) 08.4.4.
Crossrefs
Programs
-
Mathematica
nn=5; s=Sum[(1+y)^Binomial[n,2] x^n/n!, {n,0,nn}]; Range[0,nn]! CoefficientList[Series[ s Exp[-x], {x,0,nn}], {x,y}] //Grid (* returns triangle indexed at n = 0, Geoffrey Critzer, Oct 07 2012 *) Table[Length[Select[Subsets[Subsets[Range[n],{2}],{k}],Union@@#==Range[n]&]],{n,0,5},{k,0,Binomial[n,2]}] (* Gus Wiseman, Feb 14 2024 *)
Formula
T(n, k) = Sum_{i=0..n} (-1)^(n-i)*C(n, i)*C(C(i, 2), k), k=0...n*(n-1)/2.
E.g.f.: exp(-x)*Sum_{n>=0} (1 + y)^C(n,2)*x^n/n!. - Geoffrey Critzer, Oct 07 2012
Extensions
a(0) prepended by Gus Wiseman, Feb 14 2024