cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054558 Number of labeled pure 2-complexes on n nodes (0-simplexes) with 5 2-simplexes and 9 1-simplexes.

Original entry on oeis.org

150, 960, 3605, 10360, 25200, 54600, 108570, 201960, 356070, 600600, 975975, 1536080, 2351440, 3512880, 5135700, 7364400, 10377990, 14395920, 19684665, 26565000, 35420000, 46703800, 60951150, 78787800, 100941750, 128255400
Offset: 5

Views

Author

Vladeta Jovovic, Apr 10 2000

Keywords

Comments

Number of {T_1,T_2,...,T_k} where T_i, i=1..k are 3-subsets of an n-set such that {D | D is 2-subset of T_i for some i=1..k} has l elements; k=5, l=9.

References

  • V. Jovovic, On the number of two-dimensional simplicial complexes (in Russian), Metody i sistemy tekhnicheskoy diagnostiki, Vypusk 16, Mezhvuzovskiy zbornik nauchnykh trudov, Izdatelstvo Saratovskogo universiteta, 1991.

Crossrefs

Cf. A054557.

Programs

  • Maple
    A054558:=n->n*(n-1)*(n-2)*(n-3)*(n-4)*(n^2+n+150)/144; seq(A054558(n), n=5..30); # Wesley Ivan Hurt, Apr 29 2014
  • Mathematica
    Table[n*(n - 1)*(n - 2)*(n - 3)*(n - 4)*(n^2 + n + 150)/144, {n, 5, 30}] (* Wesley Ivan Hurt, Apr 29 2014 *)

Formula

a(n) = 150*C(n,5) +60*C(n,6) +35*C(n,7) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n^2+n+150)/144.
G.f.: 5*x^5*(30-48*x+25*x^2)/(1-x)^8. - Colin Barker, Jun 21 2012