A054582 Array read by antidiagonals upwards: A(m,k) = 2^m * (2k+1), m,k >= 0.
1, 2, 3, 4, 6, 5, 8, 12, 10, 7, 16, 24, 20, 14, 9, 32, 48, 40, 28, 18, 11, 64, 96, 80, 56, 36, 22, 13, 128, 192, 160, 112, 72, 44, 26, 15, 256, 384, 320, 224, 144, 88, 52, 30, 17, 512, 768, 640, 448, 288, 176, 104, 60, 34, 19, 1024, 1536, 1280, 896, 576, 352, 208, 120
Offset: 0
Examples
Northwest corner of array A: 1 3 5 7 9 11 13 15 17 19 2 6 10 14 18 22 26 30 34 38 4 12 20 28 36 44 52 60 68 76 8 24 40 56 72 88 104 120 136 152 16 48 80 112 144 176 208 240 272 304 32 96 160 224 288 352 416 480 544 608 64 192 320 448 576 704 832 960 1088 1216 128 384 640 896 1152 1408 1664 1920 2176 2432 256 768 1280 1792 2304 2816 3328 3840 4352 4864 512 1536 2560 3584 4608 5632 6656 7680 8704 9728 [Array edited to match the definition. - _L. Edson Jeffery_, Jun 05 2015] From _Philippe Deléham_, Dec 13 2013: (Start) a(13-1)=20=2*10, so a(13)=10+A006519(20)=10+4=14. a(3-1)=3=2*1+1, so a(3)=2^(1+1)=4. (End) From _Wolfdieter Lang_, Jan 30 2019: (Start) The triangle T begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 2 3 2: 4 6 5 3: 8 12 10 7 4: 16 24 20 14 9 5: 32 48 40 28 18 11 6: 64 96 80 56 36 22 13 7: 128 192 160 112 72 44 26 15 8: 256 384 320 224 144 88 52 30 17 9: 512 768 640 448 288 176 104 60 34 19 10: 1024 1536 1280 896 576 352 208 120 68 38 21 ... T(3, 2) = 2^1*(2*2+1) = 10. (End)
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- Clark Kimberling, Interspersions and Dispersions.
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Haskell
a054582 n k = a054582_tabl !! n !! k a054582_row n = a054582_tabl !! n a054582_tabl = iterate (\xs@(x:_) -> (2 * x) : zipWith (+) xs (iterate (`div` 2) (2 * x))) [1] a054582_list = concat a054582_tabl -- Reinhard Zumkeller, Jan 22 2013
-
Mathematica
(* Array: *) Grid[Table[2^m*(2*k + 1), {m, 0, 9}, {k, 0, 9}]] (* L. Edson Jeffery, Jun 05 2015 *) (* Array antidiagonals flattened: *) Flatten[Table[2^(m - k)*(2*k + 1), {m, 0, 9}, {k, 0, m}]] (* L. Edson Jeffery, Jun 05 2015 *)
-
PARI
T(m,k)=(2*k+1)<
Charles R Greathouse IV, Jun 21 2017
Formula
As a sequence, if n is a triangular number, then a(n)=a(n-A002024(n))+2, otherwise a(n)=2*a(n-A002024(n)-1).
a(n) = A075300(n-1)+1.
Recurrence for the sequence: if a(n-1)=2*k is even, then a(n)=k+A006519(2*k); if a(n-1)=2*k+1 is odd, then a(n)=2^(k+1), a(0)=1. - Philippe Deléham, Dec 13 2013
The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1), for n >= 0 and k = 0..n. - Wolfdieter Lang, Jan 30 2019
Extensions
Offset corrected by Reinhard Zumkeller, Jan 22 2013
Comments