A054621 Number of ways to color vertices of a heptagon using <= n colors, allowing only rotations.
0, 1, 20, 315, 2344, 11165, 39996, 117655, 299600, 683289, 1428580, 2783891, 5118840, 8964085, 15059084, 24408495, 38347936, 58619825, 87460020, 127695979, 182857160, 257298381, 356336860, 486403655, 655210224, 871930825, 1147401476, 1494336195, 1927561240
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Magma
I:=[0, 1, 20, 315, 2344, 11165, 39996, 117655]; [n le 8 select I[n] else 8*Self(n-1)-28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5)-28*Self(n-6)+8*Self(n-7)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, Apr 30 2012
-
Maple
a:=proc(n) option remember: if n=0 then 0 elif n=1 then 1 elif n=2 then 20 elif n=3 then 315 elif n=4 then 2344 elif n=5 then 11165 elif n=6 then 39996 elif n=7 then 117655 elif n=8 then 299600 else 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8): fi: end: seq(a(n), n=0..50); # Wesley Ivan Hurt, Sep 15 2015
-
Mathematica
CoefficientList[Series[x*(1+12*x+183*x^2+328*x^3+183*x^4+ 12*x^5+x^6)/(x-1)^8,{x,0,33}],x] (* Vincenzo Librandi, Apr 30 2012 *)
Formula
a(n) = (1/7) * Sum_{d|7} phi(d)*n^(7/d) = (1/7) * (n^7 + 6*n). [corrected by Klaus Wagner, Sep 15 2015]
G.f.: x*(1+12*x+183*x^2+328*x^3+183*x^4+12*x^5+x^6) / (1-x)^8. - R. J. Mathar, Aug 30 2011
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8), n>7. - Wesley Ivan Hurt, Sep 15 2015
Extensions
Edited by Christian G. Bower, Sep 07 2002
Comments