cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054630 T(n,k) = Sum_{d|k} phi(d)*n^(k/d)/k, triangle read by rows, T(n,k) for n >= 1 and 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 6, 11, 4, 10, 24, 70, 5, 15, 45, 165, 629, 6, 21, 76, 336, 1560, 7826, 7, 28, 119, 616, 3367, 19684, 117655, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 9, 45, 249, 1665, 11817, 88725, 683289, 5381685, 43046889, 10, 55, 340, 2530, 20008, 166870, 1428580, 12501280, 111111340, 1000010044
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000, revised Mar 21 2007

Keywords

Comments

T(n, k) is the number of n-ary necklaces of length k (see Ruskey, Savage and Wang). - Peter Luschny, Aug 12 2012, comment corrected at the suggestion of Petros Hadjicostas, Peter Luschny, Sep 10 2018
From Petros Hadjicostas, Sep 12 2018: (Start)
The programs by Peter Luschny below can generate all n-ary necklaces of length k (and all k-ary necklaces of length n) for any positive integer values of n and k, not just for 1 <= k <= n.
From the examples below, we see that the number of 4-ary necklaces of length 3 equals the number of 3-ary necklaces of length 4. The question is whether there are other pairs (n, k) of distinct positive integers such that the number of n-ary necklaces of length k equals the number of k-ary necklaces of length n.
(End)

Examples

			Triangle starts:
  1;
  2,  3;
  3,  6, 11;
  4, 10, 24, 70;
  5, 15, 45, 165,  629;
  6, 21, 76, 336, 1560, 7826;
The 24 necklaces over {0,1,2} of length 4 are:
  0000,0001,0002,0011,0012,0021,0022,0101,0102,0111,0112,0121,
  0122,0202,0211,0212,0221,0222,1111,1112,1122,1212,1222,2222.
The 24 necklaces over {0,1,2,3} of length 3 are:
  000,001,002,003,011,012,013,021,022,023,031,032,
  033,111,112,113,122,123,132,133,222,223,233,333.
		

References

  • D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.

Crossrefs

Cf. A054631, A054618, A054619, A056665, A215474. Upper triangle of A075195.

Programs

  • Julia
    A054630(n::Int, k::Int) = div(sum(n^gcd(i,k) for i in 1:k), k)
    for n in 1:6
        println([A054630(n, k) for k in 1:n])
    end # Peter Luschny, Sep 10 2018
  • Maple
    T := (n,k) -> add(n^igcd(i,k), i=1..k)/k:
    seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 10 2018
  • Mathematica
    T[n_, k_] := 1/k Sum[EulerPhi[d] n^(k/d), {d, Divisors[k]}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
  • Sage
    def A054630(n,k): return (1/k)*add(euler_phi(d)*n^(k/d) for d in divisors(k))
    for n in (1..9):
        print([A054630(n,k) for k in (1..n)]) # Peter Luschny, Aug 12 2012
    

Formula

T(n,n) = A056665(n). - Peter Luschny, Aug 12 2012
T(n,k) = (1/k)*Sum_{i=1..k} n^gcd(i, k). - Peter Luschny, Sep 10 2018