cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A075195 Jablonski table T(n,k) read by antidiagonals: T(n,k) = number of necklaces with n beads of k colors.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 6, 1, 6, 15, 24, 24, 8, 1, 7, 21, 45, 70, 51, 14, 1, 8, 28, 76, 165, 208, 130, 20, 1, 9, 36, 119, 336, 629, 700, 315, 36, 1, 10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1, 11, 55, 249, 1044, 3367, 7826, 11165, 8230, 2195, 108, 1
Offset: 1

Views

Author

Christian G. Bower, Sep 07 2002

Keywords

Comments

From Richard L. Ollerton, May 07 2021: (Start)
Here, as in A000031, turning over is not allowed.
(1/n) * Dirichlet convolution of phi(n) and k^n. (End)

Examples

			The array T(n,k) for n >= 1, k >= 1 begins:
  1,  2,   3,    4,     5,     6,      7, ...
  1,  3,   6,   10,    15,    21,     28, ...
  1,  4,  11,   24,    45,    76,    119, ...
  1,  6,  24,   70,   165,   336,    616, ...
  1,  8,  51,  208,   629,  1560,   3367, ...
  1, 14, 130,  700,  2635,  7826,  19684, ...
  1, 20, 315, 2344, 11165, 39996, 117655, ...
From _Indranil Ghosh_, Mar 25 2017: (Start)
Triangle formed when the array is read by antidiagonals:
   1;
   2,  1;
   3,  3,   1;
   4,  6,   4,   1;
   5, 10,  11,   6,    1;
   6, 15,  24,  24,    8,    1;
   7, 21,  45,  70,   51,   14,    1;
   8, 28,  76, 165,  208,  130,   20,   1;
   9, 36, 119, 336,  629,  700,  315,  36,  1;
  10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1;
  ... (End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 86 (2.2.23).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 496.
  • Louis Comtet, Analyse combinatoire, Tome 2, p. 104 #17, P.U.F., 1970.

Crossrefs

Main Diagonal: A056665. A054630 and A054631 are the upper and lower triangles.

Programs

  • Mathematica
    t[n_, k_] := (1/n)*Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[t[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Philippe Deléham *)
  • PARI
    T(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d));
    for(n=1, 15, for(k=1, n, print1(T(k, n - k + 1),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy.ntheory import totient, divisors
    def T(n,k): return sum(totient(d)*k**(n//d) for d in divisors(n))//n
    for n in range(1, 16):
        print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 25 2017

Formula

T(n,k) = (1/n)*Sum_{d | n} phi(d)*k^(n/d), where phi = Euler totient function A000010. - Philippe Deléham, Oct 08 2003
From Petros Hadjicostas, Feb 08 2021: (Start)
O.g.f. for column k >= 1: Sum_{n>=1} T(n,k)*x^n = -Sum_{j >= 1} (phi(j)/j) * log(1 - k*x^j).
Linear recurrence for row n >= 1: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 2. (This recurrence is essentially due to Robert A. Russell, who contributed it in A321791.) (End)
From Richard L. Ollerton, May 07 2021: (Start)
T(n,k) = (1/n)*Sum_{i=1..n} k^gcd(n,i).
T(n,k) = (1/n)*Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
T(n,k) = (1/n)*A185651(n,k) for n >= 1, k >= 1. (End)
Product_{n>=1} 1/(1 - x^n)^T(n,k) = Product_{n>=1} 1/(1 - k*x^n). - Seiichi Manyama, Apr 12 2025

Extensions

Additional references from Philippe Deléham, Oct 08 2003

A056665 Number of equivalence classes of n-valued Post functions of 1 variable under action of complementing group C(1,n).

Original entry on oeis.org

1, 3, 11, 70, 629, 7826, 117655, 2097684, 43046889, 1000010044, 25937424611, 743008623292, 23298085122493, 793714780783770, 29192926025492783, 1152921504875290696, 48661191875666868497, 2185911559749720272442, 104127350297911241532859
Offset: 1

Views

Author

Vladeta Jovovic, Aug 09 2000

Keywords

Comments

Diagonal of arrays defined in A054630 and A054631.
Given n colors, a(n) = number of necklaces with n beads and 1 up to n colors effectively assigned to them (super_labeled: which also generates n different monochrome necklaces). - Wouter Meeussen, Aug 09 2002
Number of endofunctions on a set with n objects up to cyclic permutation (rotation). E.g., for n = 3, the 11 endofunctions are 1,1,1; 2,2,2; 3,3,3; 1,1,2; 1,2,2; 1,1,3; 1,3,3; 2,2,3; 2,3,3; 1,2,3; and 1,3,2. - Franklin T. Adams-Watters, Jan 17 2007
Also number of pre-necklaces in Sigma(n,n) (see Ruskey and others). - Peter Luschny, Aug 12 2012
From Olivier Gérard, Aug 01 2016: (Start)
Decomposition of the endofunctions by class size.
.
n | 1 2 3 4 5 6 7
--+----------------------------------
1 | 1
2 | 2 1
3 | 3 0 8
4 | 4 6 0 60
5 | 5 0 0 0 624
6 | 6 15 70 0 0 7735
7 | 7 0 0 0 0 0 117648
.
The right diagonal gives the number of Lyndon Words or aperiodic necklaces, A075147. By multiplying each column by the corresponding size and summing, one gets A000312.
(End)

Examples

			The 11 necklaces for n=3 are (grouped by partition of 3): (RRR,GGG,BBB),(RRG,RGG, RRB,RBB, GGB,GBB), (RGB,RBG).
		

References

  • D. E. Knuth. Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, 7.2.1.1. Addison-Wesley, 2005.

Crossrefs

Diagonal of arrays defined in A054630, A054631 and A075195.
Cf. A075147 Aperiodic necklaces, a subset of this sequence.
Cf. A000169 Classes under translation mod n
Cf. A168658 Classes under complement to n+1
Cf. A130293 Classes under translation and rotation
Cf. A081721 Classes under rotation and reversal
Cf. A275549 Classes under reversal
Cf. A275550 Classes under reversal and complement
Cf. A275551 Classes under translation and reversal
Cf. A275552 Classes under translation and complement
Cf. A275553 Classes under translation, complement and reversal
Cf. A275554 Classes under translation, rotation and complement
Cf. A275555 Classes under translation, rotation and reversal
Cf. A275556 Classes under translation, rotation, complement and reversal
Cf. A275557 Classes under rotation and complement
Cf. A275558 Classes under rotation, complement and reversal
Cf. A228640.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(phi(d)*n^(n/d), d=divisors(n))/n:
    seq(a(n), n=1..25);  # Alois P. Heinz, Jun 18 2013
  • Mathematica
    Table[Fold[ #1+EulerPhi[ #2] n^(n/#2)&, 0, Divisors[n]]/n, {n, 7}]
  • PARI
    a(n) = sum(k=1,n,n^gcd(k,n)) / n; \\ Joerg Arndt, Mar 19 2017
  • Sage
    # This algorithm counts all n-ary n-tuples (a_1,..,a_n) such that the string a_1...a_n is preprime. It is algorithm F in Knuth 7.2.1.1.
    def A056665_list(n):
        C = []
        for m in (1..n):
            a = [0]*(n+1); a[0]=-1;
            j = 1; count = 0
            while(true):
                if m%j == 0 : count += 1;
                j = n
                while a[j] >= m-1 : j -= 1
                if j == 0 : break
                a[j] += 1
                for k in (j+1..n): a[k] = a[k-j]
            C.append(count)
        return C
    
  • Sage
    def A056665(n): return sum(euler_phi(d)*n^(n//d)//n for d in divisors(n))
    [A056665(n) for n in (1..18)] # Peter Luschny, Aug 12 2012
    

Formula

a(n) = Sum_{d|n} phi(d)*n^(n/d)/n.
a(n) ~ n^(n-1). - Vaclav Kotesovec, Sep 11 2014
a(n) = (1/n) * Sum_{k=1..n} n^gcd(k,n). - Joerg Arndt, Mar 19 2017
a(n) = [x^n] -Sum_{k>=1} phi(k)*log(1 - n*x^k)/k. - Ilya Gutkovskiy, Mar 21 2018
From Richard L. Ollerton, May 07 2021: (Start)
a(n) = (1/n)*Sum_{k=1..n} n^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*A228640(n). (End)

A054631 Triangle read by rows: row n (n >= 1) contains the numbers T(n,k) = Sum_{d|n} phi(d)*k^(n/d)/n, for k=1..n.

Original entry on oeis.org

1, 1, 3, 1, 4, 11, 1, 6, 24, 70, 1, 8, 51, 208, 629, 1, 14, 130, 700, 2635, 7826, 1, 20, 315, 2344, 11165, 39996, 117655, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684, 1, 60, 2195, 29144, 217045, 1119796, 4483815, 14913200, 43046889
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000, revised Mar 21 2007

Keywords

Comments

T(n,k) is the number of n-bead necklaces with up to k different colored beads. - Yves-Loic Martin, Sep 29 2020

Examples

			1;
1,  3;                                   (A000217)
1,  4,  11;                              (A006527)
1,  6,  24,   70;                        (A006528)
1,  8,  51,  208,   629;                 (A054620)
1, 14, 130,  700,  2635,  7826;          (A006565)
1, 20, 315, 2344, 11165, 39996, 117655;  (A054621)
		

Crossrefs

Cf. A054630, A054618, A054619, A087854. Lower triangle of A075195.

Programs

  • Maple
    A054631 := proc(n,k) add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n) ) ;  %/n ; end proc: # R. J. Mathar, Aug 30 2011
  • Mathematica
    Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n, k, Cyclic], {k, 1, n}], {n, 1, 8}] //Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
    t[n_, k_] := Sum[EulerPhi[d]*k^(n/d)/n, {d, Divisors[n]}]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d))/n; \\ Seiichi Manyama, Mar 10 2021
    
  • PARI
    T(n, k) = sum(j=1, n, k^gcd(j, n))/n; \\ Seiichi Manyama, Mar 10 2021

Formula

T(n,k) = Sum_{j=1..k} binomial(k,j) * A087854(n, j). - Yves-Loic Martin, Sep 29 2020
T(n,k) = (1/n) * Sum_{j=1..n} k^gcd(j, n). - Seiichi Manyama, Mar 10 2021

A215474 Triangle read by rows: number of k-ary n-tuples (a_1,..,a_n) such that the string a_1...a_n is preprime.

Original entry on oeis.org

1, 1, 3, 1, 5, 14, 1, 8, 32, 90, 1, 14, 80, 294, 829, 1, 23, 196, 964, 3409, 9695, 1, 41, 508, 3304, 14569, 49685, 141280, 1, 71, 1318, 11464, 63319, 259475, 861580, 2447592, 1, 127, 3502, 40584, 280319, 1379195, 5345276, 17360616, 49212093, 1, 226, 9382
Offset: 1

Views

Author

Peter Luschny, Aug 12 2012

Keywords

Comments

A string is prime if it is nonempty and lexicographically less than all of its proper suffixes. A string is preprime if it is a nonempty prefix of a prime, on some alphabet. See the Knuth reference, section 7.2.1.1.

Examples

			T(4, 3) counts the 32 ternary preprimes of length 4 which are:
0000,0001,0002,0010,0011,0012,0020,0021,0022,0101,0102,
0110,0111,0112,0120,0121,0122,0202,0210,0211,0212,0220,
0221,0222,1111,1112,1121,1122,1212,1221,1222,2222.
Triangle starts (compare the table A143328 as a square array):
[1]
[1,  3]
[1,  5,  14]
[1,  8,  32,   90]
[1, 14,  80,  294,   829]
[1, 23, 196,  964,  3409,  9695]
[1, 41, 508, 3304, 14569, 49685, 141280]
		

References

  • D. E. Knuth. Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.

Crossrefs

Programs

  • Maple
    # From Alois P. Heinz A143328.
    with(numtheory):
    f0 := proc(n) option remember; unapply(k^n-add(f0(d)(k),d=divisors(n) minus{n}),k) end;
    f2 := proc(n) option remember; unapply(f0(n)(x)/n,x) end;
    g2 := proc(n) option remember; unapply(add(f2(j)(x),j=1..n),x) end;
    A215474 := (n, k) -> g2(n)(k);
    seq(print(seq(A215474(n,d),d=1..n)),n=1..8);
  • Mathematica
    t[n_, k_] := Sum[(1/j)*MoebiusMu[j/d]*k^d, {j, 1, n}, {d, Divisors[j]}]; Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 26 2013 *)
  • Sage
    # This algorithm generates and counts all k-ary n-tuples
    # (a_1,..,a_n) such that the string a_1...a_n is preprime.
    # It is algorithm F in Knuth 7.2.1.1.
    def A215474_count(n, k):
        a = [0]*(n+1); a[0]=-1
        j = 1; count = 0
        while True:
            count += 1;
            j = n
            while a[j] >= k-1 : j -= 1
            if j == 0 : break
            a[j] += 1
            for i in (j+1..n): a[i] = a[i-j]
        return count
    def A215474(n,k):
         return add((1/j)*add(moebius(j/d)*k^d for d in divisors(j))  for j in (1..n))
    for n in (1..9): print([A215474(n,k) for k in (1..n)])

Formula

T(n,k) = Sum_{1<=j<=n} (1/j)*Sum_{d|j} mu(j/d)*k^d.
T(n,n) = A143328(n,n).

A054618 Triangle T(n,k) = Sum_{d|n} phi(d)*k^(n/d).

Original entry on oeis.org

1, 2, 6, 3, 12, 33, 4, 24, 96, 280, 5, 40, 255, 1040, 3145, 6, 84, 780, 4200, 15810, 46956, 7, 140, 2205, 16408, 78155, 279972, 823585, 8, 288, 6672, 65840, 391320, 1681008, 5767328, 16781472, 9, 540, 19755, 262296, 1953405, 10078164, 40354335, 134218800, 387422001
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Dirichlet convolution of A000010(n) and k^n. - Richard L. Ollerton, May 10 2021

Examples

			1;
2, 6;
3, 12, 33;
4, 24, 96,  280;
5, 40, 255, 1040, 3145;
6, 84, 780, 4200, 15810, 46956;
...
		

Crossrefs

Main diagonal gives: A228640.
Cf. A000010.

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(phi(d)*k^(n/d), d=divisors(n)):
    seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 28 2013
    A054618 := proc(n, k)
        add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n)) ;
    end proc:
    seq(seq(A054618(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jan 23 2022
  • Mathematica
    T[n_, k_] := Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2015 *)
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d)); \\ Michel Marcus, Feb 25 2015

Formula

From Richard L. Ollerton, May 10 2021: (Start)
T(n,k) = Sum_{i=1..n} k^gcd(n,i).
T(n,k) = Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)). (End)

A054619 Triangle T(n,k) = Sum_{d|k} phi(d)*n^(k/d).

Original entry on oeis.org

1, 2, 6, 3, 12, 33, 4, 20, 72, 280, 5, 30, 135, 660, 3145, 6, 42, 228, 1344, 7800, 46956, 7, 56, 357, 2464, 16835, 118104, 823585, 8, 72, 528, 4176, 32800, 262800, 2097200, 16781472, 9, 90, 747, 6660, 59085, 532350, 4783023, 43053480, 387422001
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Examples

			1;
2, 6;
3, 12, 33;
4, 20, 72,  280;
5, 30, 135, 660,  3145;
6, 42, 228, 1344, 7800, 46956;
...
		

Crossrefs

Cf. A054618, A054630, A054631, A185651 (transpose).
Main diagonal gives: A228640.

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(phi(d)*n^(k/d), d=divisors(k)):
    seq(seq(T(n,k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 28 2013
  • Mathematica
    T[n_, k_] := Sum[EulerPhi[d]*n^(k/d), {d, Divisors[k]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2015 *)
  • PARI
    T(n, k) = sumdiv(k, d, eulerphi(d)*n^(k/d)); \\ Michel Marcus, Feb 25 2015

A121775 T(n, k) = Sum_{d|n} phi(n/d)*binomial(d,k) for n>0, T(0, 0) = 1. Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 5, 3, 1, 4, 8, 7, 4, 1, 5, 9, 10, 10, 5, 1, 6, 15, 20, 21, 15, 6, 1, 7, 13, 21, 35, 35, 21, 7, 1, 8, 20, 36, 60, 71, 56, 28, 8, 1, 9, 21, 42, 86, 126, 126, 84, 36, 9, 1, 10, 27, 59, 130, 215, 253, 210, 120, 45, 10, 1, 11, 21, 55, 165, 330, 462, 462, 330, 165, 55
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2006

Keywords

Comments

For n>0, (1/n)*Sum_{k=0..n} T(n,k)*(c-1)^k is the number of n-bead necklaces with c colors. See the cross references.

Examples

			Triangle begins:
[ 0]  1;
[ 1]  1,  1;
[ 2]  2,  3,  1;
[ 3]  3,  5,  3,   1;
[ 4]  4,  8,  7,   4,   1;
[ 5]  5,  9, 10,  10,   5,   1;
[ 6]  6, 15, 20,  21,  15,   6,   1;
[ 7]  7, 13, 21,  35,  35,  21,   7,   1;
[ 8]  8, 20, 36,  60,  71,  56,  28,   8,  1;
[ 9]  9, 21, 42,  86, 126, 126,  84,  36,  9,  1;
[10] 10, 27, 59, 130, 215, 253, 210, 120, 45, 10, 1;
		

Crossrefs

Cf. A053635 (row sums), A121776 (antidiagonal sums), A054630, A327029.
Cf. A000031 (c=2), A001867 (c=3), A001868 (c=4), A001869 (c=5), A054625 (c=6), A054626 (c=7), A054627 (c=8), A054628 (c=9), A054629 (c=10).

Programs

  • PARI
    T(n,k)=if(n
    				
  • SageMath
    # uses[DivisorTriangle from A327029]
    DivisorTriangle(euler_phi, binomial, 13) # Peter Luschny, Aug 24 2019

A319082 A(n, k) = (1/k)*Sum_{d|k} EulerPhi(d)*n^(k/d) for n >= 0 and k > 0, A(n, 0) = 0, square array read by ascending antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 3, 1, 0, 0, 4, 6, 4, 1, 0, 0, 5, 10, 11, 6, 1, 0, 0, 6, 15, 24, 24, 8, 1, 0, 0, 7, 21, 45, 70, 51, 14, 1, 0, 0, 8, 28, 76, 165, 208, 130, 20, 1, 0, 0, 9, 36, 119, 336, 629, 700, 315, 36, 1, 0, 0, 10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1, 0, 0, 11, 55, 249, 1044, 3367, 7826, 11165, 8230, 2195, 108, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 10 2018

Keywords

Examples

			Array starts:
[n\k][0   1   2    3    4     5      6       7       8        9  ...]
[0]   0,  0,  0,   0,   0,    0,     0,      0,      0,       0, ...
[1]   0,  1,  1,   1,   1,    1,     1,      1,      1,       1, ...
[2]   0,  2,  3,   4,   6,    8,    14,     20,     36,      60, ...
[3]   0,  3,  6,  11,  24,   51,   130,    315,    834,    2195, ...
[4]   0,  4, 10,  24,  70,  208,   700,   2344,   8230,   29144, ...
[5]   0,  5, 15,  45, 165,  629,  2635,  11165,  48915,  217045, ...
[6]   0,  6, 21,  76, 336, 1560,  7826,  39996, 210126, 1119796, ...
[7]   0,  7, 28, 119, 616, 3367, 19684, 117655, 720916, 4483815, ...
		

References

  • D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.

Crossrefs

Essentially the same table as A075195.
A185651(n, k) = n*A(k, n).
Main diagonal gives A056665.
A054630(n,k) is a subtriangle for n >= 1 and 1 <= k <= n.

Programs

  • Maple
    with(numtheory):
    A := (n, k) -> `if`(k=0, 0, (1/k)*add(phi(d)*n^(k/d), d=divisors(k))):
    seq(seq(A(n-k, k), k=0..n), n=0..12);
    # Alternatively, row-wise printed as a table:
    T := (n, k) -> `if`(k=0, 0, add(n^igcd(i, k), i=1..k)/k):
    seq(lprint(seq(T(n, k), k=0..9)), n=0..7);
  • PARI
    A(n,k)=if(k==0, 0, sumdiv(k,d, eulerphi(d)*n^(k/d))/k) \\ Andrew Howroyd, Jan 05 2024
  • Sage
    def A319082(n, k):
        return 0 if k == 0 else (1/k)*sum(euler_phi(d)*n^(k//d) for d in divisors(k))
    for n in (0..7):
        print([n], [A319082(n, k) for k in (0..9)])
    

Formula

A(n, k) = (1/k)*Sum_{i=1..k} n^gcd(i, k) for k > 0.
Showing 1-8 of 8 results.