A081720 Triangle T(n,k) read by rows, giving number of bracelets (turnover necklaces) with n beads of k colors (n >= 1, 1 <= k <= n).
1, 1, 3, 1, 4, 10, 1, 6, 21, 55, 1, 8, 39, 136, 377, 1, 13, 92, 430, 1505, 4291, 1, 18, 198, 1300, 5895, 20646, 60028, 1, 30, 498, 4435, 25395, 107331, 365260, 1058058, 1, 46, 1219, 15084, 110085, 563786, 2250311, 7472984, 21552969, 1, 78, 3210, 53764, 493131, 3037314
Offset: 1
Examples
1; (A000027) 1, 3; (A000217) 1, 4, 10; (A000292) 1, 6, 21, 55; (A002817) 1, 8, 39, 136, 377; (A060446) 1, 13, 92, 430, 1505, 4291; (A027670) 1, 18, 198, 1300, 5895, 20646, 60028; (A060532) 1, 30, 498, 4435, 25395, 107331, 365260, 1058058; (A060560) ... For example, when n=k=3, we have the following T(3,3)=10 bracelets of 3 beads using up to 3 colors: 000, 001, 002, 011, 012, 022, 111, 112, 122, and 222. (Note that 012 = 120 = 201 = 210 = 102 = 021.) _Petros Hadjicostas_, Nov 29 2017
References
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Yi Hu, Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models, Master's Thesis, Duke Univ. (2021).
- Yi Hu and Patrick Charbonneau, Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices, arXiv:2106.08442 [cond-mat.stat-mech], 2021, cites the 4th column.
Crossrefs
Programs
-
Maple
A081720 := proc(n, k) local d, t1; t1 := 0; if n mod 2 = 0 then for d from 1 to n do if n mod d = 0 then t1 := t1+numtheory[phi](d)*k^(n/d); end if; end do: (t1+(n/2)*(1+k)*k^(n/2)) /(2*n) ; else for d from 1 to n do if n mod d = 0 then t1 := t1+numtheory[phi](d)*k^(n/d); end if; end do; (t1+n*k^((n+1)/2)) /(2*n) ; end if; end proc: seq(seq(A081720(n,k),k=1..n),n=1..10) ;
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2012, after Maple, updated Nov 02 2017 *) Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n,k,Dihedral],{k,1,n}],{n,1,8}]//Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
Formula
See Maple code.
From Petros Hadjicostas, Nov 29 2017: (Start)
T(n,k) = ((1+k)*k^{n/2}/2 + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is even, and = (k^{(n+1)/2} + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is odd.
G.f. for column k: (1/2)*((k*x+k*(k+1)*x^2/2)/(1-k*x^2) - Sum_{n>=1} (phi(n)/n)*log(1-k*x^n)) provided we chop off the Taylor expansion starting at x^k (and ignore all the terms x^n with n
(End)
2*n*T(n,k) = A054618(n,k)+n*(1+k)^(n/2)/2 if n even, = A054618(n,k)+n*k^((n+1)/2) if n odd. - R. J. Mathar, Jan 23 2022
Extensions
Name edited by Petros Hadjicostas, Nov 29 2017
A228640 a(n) = Sum_{d|n} phi(d)*n^(n/d).
0, 1, 6, 33, 280, 3145, 46956, 823585, 16781472, 387422001, 10000100440, 285311670721, 8916103479504, 302875106592409, 11112006930972780, 437893890382391745, 18446744078004651136, 827240261886336764449, 39346408075494964903956, 1978419655660313589124321
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Magma
[0] cat [&+[EulerPhi(d)*n^(n div d): d in Divisors(n)]:n in [1..20]]; // Marius A. Burtea, Feb 15 2020
-
Maple
with(numtheory): a:= n-> add(phi(d)*n^(n/d), d=divisors(n)): seq(a(n), n=0..20);
-
Mathematica
a[0] = 0; a[n_] := DivisorSum[n, EulerPhi[#]*n^(n/#)&]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 21 2017 *)
-
PARI
a(n) = if (n, sumdiv(n, d, eulerphi(d)*n^(n/d)), 0); \\ Michel Marcus, Feb 15 2020; corrected Jun 13 2022
-
PARI
a(n) = sum(k=1, n, n^gcd(k, n)); \\ Seiichi Manyama, Mar 10 2021
-
Python
from sympy import totient, divisors def A228640(n): return sum(totient(d)*n**(n//d) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
Formula
a(n) = Sum_{k=1..n} n^gcd(k,n) = n * A056665(n). - Seiichi Manyama, Mar 10 2021
a(n) = Sum_{k=1..n} n^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
A054630 T(n,k) = Sum_{d|k} phi(d)*n^(k/d)/k, triangle read by rows, T(n,k) for n >= 1 and 1 <= k <= n.
1, 2, 3, 3, 6, 11, 4, 10, 24, 70, 5, 15, 45, 165, 629, 6, 21, 76, 336, 1560, 7826, 7, 28, 119, 616, 3367, 19684, 117655, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 9, 45, 249, 1665, 11817, 88725, 683289, 5381685, 43046889, 10, 55, 340, 2530, 20008, 166870, 1428580, 12501280, 111111340, 1000010044
Offset: 1
Comments
T(n, k) is the number of n-ary necklaces of length k (see Ruskey, Savage and Wang). - Peter Luschny, Aug 12 2012, comment corrected at the suggestion of Petros Hadjicostas, Peter Luschny, Sep 10 2018
From Petros Hadjicostas, Sep 12 2018: (Start)
The programs by Peter Luschny below can generate all n-ary necklaces of length k (and all k-ary necklaces of length n) for any positive integer values of n and k, not just for 1 <= k <= n.
From the examples below, we see that the number of 4-ary necklaces of length 3 equals the number of 3-ary necklaces of length 4. The question is whether there are other pairs (n, k) of distinct positive integers such that the number of n-ary necklaces of length k equals the number of k-ary necklaces of length n.
(End)
Examples
Triangle starts: 1; 2, 3; 3, 6, 11; 4, 10, 24, 70; 5, 15, 45, 165, 629; 6, 21, 76, 336, 1560, 7826; The 24 necklaces over {0,1,2} of length 4 are: 0000,0001,0002,0011,0012,0021,0022,0101,0102,0111,0112,0121, 0122,0202,0211,0212,0221,0222,1111,1112,1122,1212,1222,2222. The 24 necklaces over {0,1,2,3} of length 3 are: 000,001,002,003,011,012,013,021,022,023,031,032, 033,111,112,113,122,123,132,133,222,223,233,333.
References
- D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.
Links
- Peter Luschny, Rows 1..45, flattened
- H. Fredricksen and I. J. Kessler, An algorithm for generating necklaces of beads in two colors, Discrete Math. 61 (1986), 181-188.
- H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences, Discrete Math. 23(3) (1978), 207-210. Reviewed in MR0523071 (80e:05007).
- Peter Luschny, Implementation of the FKM algorithm in SageMath and Julia.
- F. Ruskey, C. Savage, and T. M. Y. Wang, Generating necklaces, Journal of Algorithms, 13(3), 1992, 414-430.
- Index entries for sequences related to necklaces
Programs
-
Julia
A054630(n::Int, k::Int) = div(sum(n^gcd(i,k) for i in 1:k), k) for n in 1:6 println([A054630(n, k) for k in 1:n]) end # Peter Luschny, Sep 10 2018
-
Maple
T := (n,k) -> add(n^igcd(i,k), i=1..k)/k: seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 10 2018
-
Mathematica
T[n_, k_] := 1/k Sum[EulerPhi[d] n^(k/d), {d, Divisors[k]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
-
Sage
def A054630(n,k): return (1/k)*add(euler_phi(d)*n^(k/d) for d in divisors(k)) for n in (1..9): print([A054630(n,k) for k in (1..n)]) # Peter Luschny, Aug 12 2012
Formula
T(n,n) = A056665(n). - Peter Luschny, Aug 12 2012
T(n,k) = (1/k)*Sum_{i=1..k} n^gcd(i, k). - Peter Luschny, Sep 10 2018
A054631 Triangle read by rows: row n (n >= 1) contains the numbers T(n,k) = Sum_{d|n} phi(d)*k^(n/d)/n, for k=1..n.
1, 1, 3, 1, 4, 11, 1, 6, 24, 70, 1, 8, 51, 208, 629, 1, 14, 130, 700, 2635, 7826, 1, 20, 315, 2344, 11165, 39996, 117655, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684, 1, 60, 2195, 29144, 217045, 1119796, 4483815, 14913200, 43046889
Offset: 1
Comments
T(n,k) is the number of n-bead necklaces with up to k different colored beads. - Yves-Loic Martin, Sep 29 2020
Examples
1; 1, 3; (A000217) 1, 4, 11; (A006527) 1, 6, 24, 70; (A006528) 1, 8, 51, 208, 629; (A054620) 1, 14, 130, 700, 2635, 7826; (A006565) 1, 20, 315, 2344, 11165, 39996, 117655; (A054621)
Links
- Seiichi Manyama, Rows n = 1..140, flattened
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
Programs
-
Maple
A054631 := proc(n,k) add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n) ) ; %/n ; end proc: # R. J. Mathar, Aug 30 2011
-
Mathematica
Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n, k, Cyclic], {k, 1, n}], {n, 1, 8}] //Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *) t[n_, k_] := Sum[EulerPhi[d]*k^(n/d)/n, {d, Divisors[n]}]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
-
PARI
T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d))/n; \\ Seiichi Manyama, Mar 10 2021
-
PARI
T(n, k) = sum(j=1, n, k^gcd(j, n))/n; \\ Seiichi Manyama, Mar 10 2021
Formula
T(n,k) = Sum_{j=1..k} binomial(k,j) * A087854(n, j). - Yves-Loic Martin, Sep 29 2020
T(n,k) = (1/n) * Sum_{j=1..n} k^gcd(j, n). - Seiichi Manyama, Mar 10 2021
A054619 Triangle T(n,k) = Sum_{d|k} phi(d)*n^(k/d).
1, 2, 6, 3, 12, 33, 4, 20, 72, 280, 5, 30, 135, 660, 3145, 6, 42, 228, 1344, 7800, 46956, 7, 56, 357, 2464, 16835, 118104, 823585, 8, 72, 528, 4176, 32800, 262800, 2097200, 16781472, 9, 90, 747, 6660, 59085, 532350, 4783023, 43053480, 387422001
Offset: 1
Examples
1; 2, 6; 3, 12, 33; 4, 20, 72, 280; 5, 30, 135, 660, 3145; 6, 42, 228, 1344, 7800, 46956; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Programs
-
Maple
with(numtheory): T:= (n, k)-> add(phi(d)*n^(k/d), d=divisors(k)): seq(seq(T(n,k), k=1..n), n=1..10); # Alois P. Heinz, Aug 28 2013
-
Mathematica
T[n_, k_] := Sum[EulerPhi[d]*n^(k/d), {d, Divisors[k]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2015 *)
-
PARI
T(n, k) = sumdiv(k, d, eulerphi(d)*n^(k/d)); \\ Michel Marcus, Feb 25 2015
Comments