Original entry on oeis.org
1, 4, 15, 83, 561, 6332, 88086, 1561008, 31966485, 746278033, 19441692751, 559268543516, 17599832876941, 601468320356528, 22182618618501188, 878172760660077348, 37144096971415045713, 1671734397769302244110, 79770632874353931073165, 4022719642533206402716726
Offset: 1
-
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[n_] := Sum[t[n, k], {k, 1, n}]; Array[a, 20] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
A000029
Number of necklaces with n beads of 2 colors, allowing turning over (these are also called bracelets).
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 13, 18, 30, 46, 78, 126, 224, 380, 687, 1224, 2250, 4112, 7685, 14310, 27012, 50964, 96909, 184410, 352698, 675188, 1296858, 2493726, 4806078, 9272780, 17920860, 34669602, 67159050, 130216124, 252745368, 490984488, 954637558, 1857545300
Offset: 0
For n=2, the three bracelets are AA, AB, and BB. For n=3, the four bracelets are AAA, AAB, ABB, and BBB. - _Robert A. Russell_, Sep 24 2018
- J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
- Martin Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pages 245-246.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
- N. J. A. Sloane, Table of n, a(n) for n = 0..300
- Hoda Abbasizanjani and Oliver Kullmann, Classification of minimally unsatisfiable 2-CNFs, arXiv:2003.03639 [cs.DM], 2020.
- Joerg Arndt, Matters Computational (The Fxtbook), p. 151
- Henry Bottomley, Illustration of initial terms
- Emanuele Brugnoli, Enumerating the Walecki-Type Hamiltonian Cycle Systems, Journal of Combinatorial Designs, Volume 25, Issue 11, November 2017, pp. 481-493.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Vladimir Dotsenko and Irvin Roy Hentzel, On the conjecture of Kashuba and Mathieu about free Jordan algebras, arXiv:2507.00437 [math.RA], 2025. See p. 14.
- S. N. Ethier and J. Lee, Parrondo games with spatial dependence, arXiv preprint arXiv:1202.2609 [math.PR], 2012. - From _N. J. A. Sloane_, Jun 10 2012
- S. N. Ethier and J. Lee, Parrondo games with spatial dependence II, Fluctuation and Noise Letters 11 (4) (2012), 1250030.
- S. N. Ethier, Counting toroidal binary arrays, arXiv preprint arXiv:1301.2352 [math.CO], 2013.
- S. N. Ethier, Counting toroidal binary arrays, Journal of Integer Sequences 16 (2013), Article 13.4.7.
- N. J. Fine, Classes of periodic sequences, Illinois J. Math., 2 (1958), 285-302.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Jurij Kovič, Regular polygonal systems, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 157-171.
- Jia Liu, L. Lalouat, E. Drouard, and R. Orobtchouk, Binary coded patterns for photon control using necklace problem concept, Optics Express Vol. 24, Issue 2, pp. 1133-1142 (2016).
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Zhe Sun, T. Suenaga, P. Sarkar, S. Sato, M. Kotani, and H. Isobe, Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes, Proc. Nat. Acad. Sci. USA, vol. 113 no. 29, pp. 8109-8114, doi: 10.1073/pnas.1606530113.
- James Tilley, Stan Wagon, and Eric Weisstein, A Catalog of Facially Complete Graphs, arXiv:2409.11249 [math.CO], 2024. See p. 11.
- A. M. Uludag, A. Zeytin and M. Durmus, Binary Quadratic Forms as Dessins, 2012. - From _N. J. A. Sloane_, Dec 31 2012
- Eric Weisstein's World of Mathematics, Necklace
- Eric Weisstein's World of Mathematics, e
- Index entries for "core" sequences
- Index entries for sequences related to bracelets
- Index entries for sequences related to necklaces
-
with(numtheory): A000029 := proc(n) local d,s; if n = 0 then return 1 else if n mod 2 = 1 then s := 2^((n-1)/2) else s := 2^(n/2-2)+2^(n/2-1) fi; for d in divisors(n) do s := s+phi(d)*2^(n/d)/(2*n) od; return s; fi end:
-
a[0] := 1; a[n_] := Fold[#1 + EulerPhi[#2]2^(n/#2)/(2n) &, If[OddQ[n], 2^((n - 1)/2), 2^(n/2 - 1) + 2^(n/2 - 2)], Divisors[n]]
mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n,{n,mx}]+(1+x)^2/(1-2*x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
a[0] = 1; a[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#)&]/(2*n); Array[a, 36, 0] (* Jean-François Alcover, Nov 05 2017 *)
-
a(n)=if(n<1,!n,(n%2+3)/4*2^(n\2)+sumdiv(n,d,eulerphi(n/d)*2^d)/2/n)
-
from sympy import divisors, totient
def a(n):
return 1 if n<1 else ((2**(n//2+1) if n%2 else 3*2**(n//2-1)) + sum(totient(n//d)*2**d for d in divisors(n))//n)//2
print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 23 2017
A152176
Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations and reflections.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 14, 11, 3, 1, 1, 8, 31, 33, 16, 3, 1, 1, 17, 82, 137, 85, 27, 4, 1, 1, 22, 202, 478, 434, 171, 37, 4, 1, 1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1, 1, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1, 1, 121, 3838, 26148
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 3, 2, 1;
1, 3, 5, 2, 1;
1, 7, 14, 11, 3, 1;
1, 8, 31, 33, 16, 3, 1;
1, 17, 82, 137, 85, 27, 4, 1;
1, 22, 202, 478, 434, 171, 37, 4, 1;
1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1;
...
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Tilman Piesk, Partition related number triangles
- Marko Riedel, Bracelets with swappable colors classified by the distribution of colors, Power Group Enumeration algorithm
- Marko Riedel, Maple code for the number of bracelets with some number of swappable colors by Power Group Enumeration
- Mohammad Hadi Shekarriz, GAP Program
-
Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
(* else *) _, If[OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1],
{i, 0, (n-1)/2}], Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
+ 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]] (* achiral loops of length n, k colors *)
Table[(CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x]
+ Table[Ach[n, k],{k,1,n}])/2, {n, 1, 20}] // Flatten (* Robert A. Russell, Feb 24 2018 *)
-
\\ see A056391 for Polya enumeration functions
T(n,k) = NonequivalentStructsExactly(DihedralPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
-
\\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={(R(n) + Ach(n))/2}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
A081721
Number of bracelets of n beads in up to n colors.
Original entry on oeis.org
1, 3, 10, 55, 377, 4291, 60028, 1058058, 21552969, 500280022, 12969598086, 371514016094, 11649073935505, 396857785692525, 14596464294191704, 576460770691256356, 24330595997127372497, 1092955780817066765469, 52063675152021153895330, 2621440000054016000176044
Offset: 1
Cf.
A000169 Classes under translation mod n
Cf.
A168658 Classes under complement to n+1
Cf.
A130293 Classes under translation and rotation
Cf.
A275550 Classes under reversal and complement
Cf.
A275551 Classes under translation and reversal
Cf.
A275552 Classes under translation and complement
Cf.
A275553 Classes under translation, complement and reversal
Cf.
A275554 Classes under translation, rotation and complement
Cf.
A275555 Classes under translation, rotation and reversal
Cf.
A275556 Classes under translation, rotation, complement and reversal
Cf.
A275557 Classes under rotation and complement
Cf.
A275558 Classes under rotation, complement and reversal
Row sums of partition array
A213941.
-
Table[CycleIndex[DihedralGroup[n],s]/.Table[s[i]->n,{i,1,n}],{n,1,20}] (* Geoffrey Critzer, Jun 18 2013 *)
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); a[n_] := t[n, n]; Array[a, 20] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
A027671
Number of necklaces with n beads of 3 colors, allowing turning over.
Original entry on oeis.org
1, 3, 6, 10, 21, 39, 92, 198, 498, 1219, 3210, 8418, 22913, 62415, 173088, 481598, 1351983, 3808083, 10781954, 30615354, 87230157, 249144711, 713387076, 2046856566, 5884491500, 16946569371, 48883660146, 141217160458, 408519019449, 1183289542815
Offset: 0
For n=2, the six bracelets are AA, AB, AC, BB, BC, and CC. - _Robert A. Russell_, Sep 24 2018
- J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
- M. Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pp. 245-246.
- T. D. Noe, Table of n, a(n) for n = 0..200
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- M. Taniguchi, H. Du, and J. S. Lindsey, Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts, Journal of Chemical Information and Modeling, 53 (2013), 2203-2216.
- R. M. Thompson and R. T. Downs, Systematic generation of all nonequivalent closest-packed stacking sequences of length N using group theory, Acta Cryst. B57 (2001), 766-771; B58 (2002), 153.
- Eric Weisstein's World of Mathematics, Necklace.
- Index entries for sequences related to bracelets
-
Needs["Combinatorica`"]; Join[{1}, Table[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->3, {i,1,n}], {n,1,30}]] (* Geoffrey Critzer, Sep 29 2012 *)
Needs["Combinatorica`"]; Join[{1}, Table[NumberOfNecklaces[n, 3, Dihedral], {n, 30}]] (* T. D. Noe, Oct 02 2012 *)
mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-3*x^n]/n,{n,mx}]+(1+3 x+3 x^2)/(1-3 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[0] = 1; a[n_] := t[n, 3]; Array[a, 30, 0] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 1] (* Robert A. Russell, Sep 24 2018 *)
-
a(n,k=3) = if(n==0,1,(k^floor((n+1)/2) + k^ceil((n+1)/2))/4 + (1/(2*n))* sumdiv(n, d, eulerphi(d)*k^(n/d) ) );
vector(55,n,a(n-1)) \\ Joerg Arndt, Oct 20 2019
A130293
Number of necklaces of n beads with up to n colors, with cyclic permutation {1,..,n} of the colors taken to be equivalent.
Original entry on oeis.org
1, 2, 5, 20, 129, 1316, 16813, 262284, 4783029, 100002024, 2357947701, 61917406672, 1792160394049, 56693913450992, 1946195068379933, 72057594071484456, 2862423051509815809, 121439531097819321972, 5480386857784802185957, 262144000000051200072048, 13248496640331026150086281
Offset: 1
The 5 necklaces for n=3 are: 000, 001, 002, 012 and 021.
Cf.
A000169: Classes under translation mod n.
Cf.
A056665: Classes under rotation.
Cf.
A168658: Classes under complement to n+1.
Cf.
A130293: Classes under translation and rotation.
Cf.
A081721: Classes under rotation and reversal.
Cf.
A275549: Classes under reversal.
Cf.
A275550: Classes under reversal and complement.
Cf.
A275551: Classes under translation and reversal.
Cf.
A275552: Classes under translation and complement.
Cf.
A275553: Classes under translation, complement and reversal.
Cf.
A275554: Classes under translation, rotation and complement.
Cf.
A275555: Classes under translation, rotation and reversal.
Cf.
A275556: Classes under translation, rotation, complement and reversal.
Cf.
A275557: Classes under rotation and complement.
Cf.
A275558: Classes under rotation, complement and reversal.
-
tor8={};ru8=Thread[ i_ ->Table[ Mod[i+k,8],{k,8}]];Do[idi=IntegerDigits[k,8,8];try= Function[w, First[temp=Union[Join @@(Table[RotateRight[w,k],{k,8}]/.#&)/@ ru8]]][idi];If[idi===try, tor8=Flatten[ {tor8,{{Length[temp],idi}}},1] ],{k,0,8^8-1}];
a[n_]:=Sum[d EulerPhi[d]n^(n/d),{d,Divisors[n]}]/n^2; Array[a,21] (* Stefano Spezia, May 21 2024 *)
-
a(n) = sumdiv(n, d, d*eulerphi(d)*n^(n/d))/n^2; \\ Michel Marcus, Aug 05 2016
A273891
Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 18, 24, 12;
1, 11, 56, 136, 150, 60;
1, 16, 147, 612, 1200, 1080, 360;
1, 28, 411, 2619, 7905, 11970, 8820, 2520;
1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - _Robert A. Russell_, Sep 26 2018
-
(* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,10}, {k,1,n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)
A032275
Number of bracelets (turnover necklaces) of n beads of 4 colors.
Original entry on oeis.org
4, 10, 20, 55, 136, 430, 1300, 4435, 15084, 53764, 192700, 704370, 2589304, 9608050, 35824240, 134301715, 505421344, 1909209550, 7234153420, 27489127708, 104717491064, 399827748310, 1529763696820
Offset: 1
For n=2, the ten bracelets are AA, AB, AC, AD, BB, BC, BD, CC, CD, and DD. - _Robert A. Russell_, Sep 24 2018
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- M. Taniguchi, H. Du, and J. S. Lindsey, Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts, Journal of Chemical Information and Modeling, 53 (2013), 2203-2216.
- Index entries for sequences related to bracelets
-
mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-4*x^n]/n,{n,mx}]+(1+4 x+6 x^2)/(1-4 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
k=4; Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}] (* Robert A. Russell, Sep 24 2018 *)
A284855
Array read by antidiagonals: T(n,k) = number of necklaces with n beads and k colors that are the same when turned over.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 9, 6, 1, 6, 15, 16, 18, 8, 1, 7, 21, 25, 40, 27, 12, 1, 8, 28, 36, 75, 64, 54, 16, 1, 9, 36, 49, 126, 125, 160, 81, 24, 1, 10, 45, 64, 196, 216, 375, 256, 162, 32, 1, 11, 55, 81, 288, 343, 756, 625, 640, 243, 48, 1
Offset: 1
Table starts:
1 2 3 4 5 6 7 8 9 10 ...
1 3 6 10 15 21 28 36 45 55 ...
1 4 9 16 25 36 49 64 81 100 ...
1 6 18 40 75 126 196 288 405 550 ...
1 8 27 64 125 216 343 512 729 1000 ...
1 12 54 160 375 756 1372 2304 3645 5500 ...
1 16 81 256 625 1296 2401 4096 6561 10000 ...
1 24 162 640 1875 4536 9604 18432 32805 55000 ...
1 32 243 1024 3125 7776 16807 32768 59049 100000 ...
1 48 486 2560 9375 27216 67228 147456 295245 550000 ...
...
For n = 4 and k = 2, the palindromic necklaces are 0000, 0001, 0011, 0111, 0101, 1111 so T(4,2) = 6. Necklaces are only counted up to cyclic equivalence.
For n = 4 and k = 2, using MacMahon's bijection, with B = 0 and W = 1, the corresponding Sommerville symmetrical cyclic compositions of n = 4 are as follows: 1+1+1+1, 1+1+2, 1+3, 4, 2+2 (with none for 1111). If we let B = 1 and W = 0, we get the corresponding symmetrical cyclic compositions of n=4: (none for 0000) 4, 1+3, 1+1+2, 2+2, 1+1+1+1. (All these cyclic compositions must viewed on a circle.) - _Petros Hadjicostas_, Sep 02 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for the pdf file of Chap. 2]
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Christian G. Bower, Transforms (2).
- Petros Hadjicostas, Generalized colored circular palindromic compositions, Moscow Journal of Combinatorics and Number Theory, 9(2) (2020), 173-186.
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
-
a[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n+1)/2)];
Table[a[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jun 05 2017, translated from PARI *)
-
a(n,k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2));
for(n=1, 10, for(k=1, 10, print1( a(n,k),", ");); print(););
A293496
Array read by antidiagonals: T(n,k) = number of chiral pairs of necklaces with n beads using a maximum of k colors.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 10, 15, 12, 1, 0, 0, 0, 20, 45, 72, 38, 2, 0, 0, 0, 35, 105, 252, 270, 117, 6, 0, 0, 0, 56, 210, 672, 1130, 1044, 336, 14, 0, 0, 0, 84, 378, 1512, 3535, 5270, 3795, 976, 30, 0
Offset: 1
Array begins:
==========================================================
n\k | 1 2 3 4 5 6 7 8
----+-----------------------------------------------------
1 | 0 0 0 0 0 0 0 0 ...
2 | 0 0 0 0 0 0 0 0 ...
3 | 0 0 1 4 10 20 35 56 ...
4 | 0 0 3 15 45 105 210 378 ...
5 | 0 0 12 72 252 672 1512 3024 ...
6 | 0 1 38 270 1130 3535 9156 20748 ...
7 | 0 2 117 1044 5270 19350 57627 147752 ...
8 | 0 6 336 3795 23520 102795 355656 1039626 ...
9 | 0 14 976 14060 106960 556010 2233504 7440216 ...
10 | 0 30 2724 51204 483756 3010098 14091000 53615016 ...
...
For T(3,4)=4, the chiral pairs are ABC-ACB, ABD-ADB, ACD-ADC, and BCD-BDC.
For T(4,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Sep 28 2018
-
b[n_, k_] := (1/n)*DivisorSum[n, EulerPhi[#]*k^(n/#) &];
c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n + 1)/2)];
T[, 1] = T[1, ] = 0; T[n_, k_] := (b[n, k] - c[n, k])/2;
Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 11 2017, translated from PARI *)
-
\\ here b(n,k) is A075195 and c(n,k) is A284855
b(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d));
c(n, k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2));
T(n, k) = (b(n, k) - c(n, k)) / 2;
Showing 1-10 of 18 results.
Comments