A081720 Triangle T(n,k) read by rows, giving number of bracelets (turnover necklaces) with n beads of k colors (n >= 1, 1 <= k <= n).
1, 1, 3, 1, 4, 10, 1, 6, 21, 55, 1, 8, 39, 136, 377, 1, 13, 92, 430, 1505, 4291, 1, 18, 198, 1300, 5895, 20646, 60028, 1, 30, 498, 4435, 25395, 107331, 365260, 1058058, 1, 46, 1219, 15084, 110085, 563786, 2250311, 7472984, 21552969, 1, 78, 3210, 53764, 493131, 3037314
Offset: 1
Examples
1; (A000027) 1, 3; (A000217) 1, 4, 10; (A000292) 1, 6, 21, 55; (A002817) 1, 8, 39, 136, 377; (A060446) 1, 13, 92, 430, 1505, 4291; (A027670) 1, 18, 198, 1300, 5895, 20646, 60028; (A060532) 1, 30, 498, 4435, 25395, 107331, 365260, 1058058; (A060560) ... For example, when n=k=3, we have the following T(3,3)=10 bracelets of 3 beads using up to 3 colors: 000, 001, 002, 011, 012, 022, 111, 112, 122, and 222. (Note that 012 = 120 = 201 = 210 = 102 = 021.) _Petros Hadjicostas_, Nov 29 2017
References
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Yi Hu, Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models, Master's Thesis, Duke Univ. (2021).
- Yi Hu and Patrick Charbonneau, Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices, arXiv:2106.08442 [cond-mat.stat-mech], 2021, cites the 4th column.
Crossrefs
Programs
-
Maple
A081720 := proc(n, k) local d, t1; t1 := 0; if n mod 2 = 0 then for d from 1 to n do if n mod d = 0 then t1 := t1+numtheory[phi](d)*k^(n/d); end if; end do: (t1+(n/2)*(1+k)*k^(n/2)) /(2*n) ; else for d from 1 to n do if n mod d = 0 then t1 := t1+numtheory[phi](d)*k^(n/d); end if; end do; (t1+n*k^((n+1)/2)) /(2*n) ; end if; end proc: seq(seq(A081720(n,k),k=1..n),n=1..10) ;
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2012, after Maple, updated Nov 02 2017 *) Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n,k,Dihedral],{k,1,n}],{n,1,8}]//Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
Formula
See Maple code.
From Petros Hadjicostas, Nov 29 2017: (Start)
T(n,k) = ((1+k)*k^{n/2}/2 + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is even, and = (k^{(n+1)/2} + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is odd.
G.f. for column k: (1/2)*((k*x+k*(k+1)*x^2/2)/(1-k*x^2) - Sum_{n>=1} (phi(n)/n)*log(1-k*x^n)) provided we chop off the Taylor expansion starting at x^k (and ignore all the terms x^n with n
(End)
2*n*T(n,k) = A054618(n,k)+n*(1+k)^(n/2)/2 if n even, = A054618(n,k)+n*k^((n+1)/2) if n odd. - R. J. Mathar, Jan 23 2022
Extensions
Name edited by Petros Hadjicostas, Nov 29 2017
A056353 Number of bracelet structures using a maximum of three different colored beads.
1, 1, 2, 3, 6, 9, 22, 40, 100, 225, 582, 1464, 3960, 10585, 29252, 80819, 226530, 636321, 1800562, 5107480, 14548946, 41538916, 118929384, 341187048, 980842804, 2824561089, 8147557742, 23536592235, 68087343148, 197216119545, 571924754778, 1660419530056, 4825588205920
Offset: 0
Keywords
Comments
Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- R. M. Thompson and R. T. Downs, Systematic generation of all nonequivalent closest packed stacking sequences of length N using group theory, Acta Cryst. B57 (2001), 766-771; B58 (2002), 153.
Formula
Use de Bruijn's generalization of Polya's enumeration theorem as discussed in reference.
a(n) = Sum_{k=1..3} A152176(n, k) for n > 0. - Andrew Howroyd, Oct 25 2019
Extensions
a(0)=1 prepended and terms a(28) and beyond from Andrew Howroyd, Oct 25 2019
A054631 Triangle read by rows: row n (n >= 1) contains the numbers T(n,k) = Sum_{d|n} phi(d)*k^(n/d)/n, for k=1..n.
1, 1, 3, 1, 4, 11, 1, 6, 24, 70, 1, 8, 51, 208, 629, 1, 14, 130, 700, 2635, 7826, 1, 20, 315, 2344, 11165, 39996, 117655, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684, 1, 60, 2195, 29144, 217045, 1119796, 4483815, 14913200, 43046889
Offset: 1
Comments
T(n,k) is the number of n-bead necklaces with up to k different colored beads. - Yves-Loic Martin, Sep 29 2020
Examples
1; 1, 3; (A000217) 1, 4, 11; (A006527) 1, 6, 24, 70; (A006528) 1, 8, 51, 208, 629; (A054620) 1, 14, 130, 700, 2635, 7826; (A006565) 1, 20, 315, 2344, 11165, 39996, 117655; (A054621)
Links
- Seiichi Manyama, Rows n = 1..140, flattened
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
Programs
-
Maple
A054631 := proc(n,k) add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n) ) ; %/n ; end proc: # R. J. Mathar, Aug 30 2011
-
Mathematica
Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n, k, Cyclic], {k, 1, n}], {n, 1, 8}] //Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *) t[n_, k_] := Sum[EulerPhi[d]*k^(n/d)/n, {d, Divisors[n]}]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
-
PARI
T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d))/n; \\ Seiichi Manyama, Mar 10 2021
-
PARI
T(n, k) = sum(j=1, n, k^gcd(j, n))/n; \\ Seiichi Manyama, Mar 10 2021
Formula
T(n,k) = Sum_{j=1..k} binomial(k,j) * A087854(n, j). - Yves-Loic Martin, Sep 29 2020
T(n,k) = (1/n) * Sum_{j=1..n} k^gcd(j, n). - Seiichi Manyama, Mar 10 2021
A051137 Table T(n,k) read by antidiagonals: number of necklaces allowing turnovers (bracelets) with n beads of k colors.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 10, 10, 5, 1, 1, 8, 21, 20, 15, 6, 1, 1, 13, 39, 55, 35, 21, 7, 1, 1, 18, 92, 136, 120, 56, 28, 8, 1, 1, 30, 198, 430, 377, 231, 84, 36, 9, 1, 1, 46, 498, 1300, 1505, 888, 406, 120, 45, 10, 1
Offset: 0
Examples
Table begins with T[0,1]: 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 1 3 6 10 15 21 28 36 45 55 1 4 10 20 35 56 84 120 165 220 1 6 21 55 120 231 406 666 1035 1540 1 8 39 136 377 888 1855 3536 6273 10504 1 13 92 430 1505 4291 10528 23052 46185 86185 1 18 198 1300 5895 20646 60028 151848 344925 719290 1 30 498 4435 25395 107331 365260 1058058 2707245 6278140 1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022
Links
- C. G. Bower, Transforms (2)
Crossrefs
Programs
-
Mathematica
b[n_, k_] := DivisorSum[n, EulerPhi[#]*k^(n/#) &] / n; c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2)]; T[0, ] = 1; T[n, k_] := (b[n, k] + c[n, k])/2; Table[T[n, k-n], {k, 1, 11}, {n, k-1, 0, -1}] // Flatten (* Robert A. Russell, Sep 21 2018 after Jean-François Alcover *)
Formula
T(n, k) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/(2*n)) * Sum_{d divides n} phi(d) * k^(n/d). - Robert A. Russell, Sep 21 2018
G.f. for column k: (kx/4)*(kx+x+2)/(1-kx^2) - Sum_{d>0} phi(d)*log(1-kx^d)/2d. - Robert A. Russell, Sep 28 2018
T(n, k) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i). (See A075195 formulas.) - Richard L. Ollerton, May 04 2021
A056343 Number of bracelets of length n using exactly three different colored beads.
0, 0, 1, 6, 18, 56, 147, 411, 1084, 2979, 8043, 22244, 61278, 171030, 477929, 1345236, 3795750, 10758902, 30572427, 87149124, 248991822, 713096352, 2046303339, 5883433409, 16944543810, 48879769575
Offset: 1
Keywords
Comments
Turning over will not create a new bracelet.
Examples
For a(4)=6, the arrangements are ABAC, ABCB, ACBC, AABC, ABBC, and ABCC. Only the last three are chiral, their reverses being AACB, ACBB, and ACCB respectively. - _Robert A. Russell_, Sep 26 2018
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}]; a[n_] := T[n, 3]; Array[a, 26] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *) k=3; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 26 2018 *)
Formula
From Robert A. Russell, Sep 26 2018: (Start)
a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=3 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=3 is the number of colors. (End)
A056344 Number of bracelets of length n using exactly four different colored beads.
0, 0, 0, 3, 24, 136, 612, 2619, 10480, 41388, 159780, 614058, 2341920, 8919816, 33905188, 128907279, 490213680, 1866127840, 7111777860, 27140369148, 103721218000, 396974781456, 1521577377012, 5840547488954
Offset: 1
Keywords
Comments
Turning over will not create a new bracelet.
Examples
For a(4)=3, the arrangements are ABCD, ABDC, and ACBD, all chiral, their reverses being ADCB, ACDB, and ADBC respectively.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Programs
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}]; a[n_] := T[n, 4]; Array[a, 24] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *) k=4; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 27 2018 *)
Formula
From Robert A. Russell, Sep 27 2018: (Start)
a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=4 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=4 is the number of colors.
A114438 Number of Barlow packings that repeat after n (or a divisor of n) layers.
0, 1, 1, 2, 1, 4, 3, 8, 8, 18, 21, 48, 63, 133, 205, 412, 685, 1354, 2385, 4644, 8496, 16431, 30735, 59344, 112531, 217246, 415628, 803210, 1545463, 2991192, 5778267, 11201884, 21702708, 42141576, 81830748, 159140896, 309590883, 602938099, 1174779397, 2290920128
Offset: 1
Keywords
Comments
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..500
- Dennis S. Bernstein, Omran Kouba, Counting Colorful Necklaces and Bracelets in Three Colors, arXiv:1901.10703 [math.CO], 2019.
- J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
- E. Estevez-Rams, C. Azanza-Ricardo, J. Martínez García and B. Aragón-Fernández, On the algebra of binary codes representing closed-packed staking sequences, Acta Cryst. A61 (2005), 201-208.
- T. J. McLarnan, The numbers of polytypes in close packings and related structures, Zeits. Krist. 155, 269-291 (1981). [See P'(N) on page 272.]
- R. M. Thompson and R. T. Downs, Systematic generation of all nonequivalent closest-packed stacking sequences of length N using group theory, Acta Cryst. B57 (2001), 766-771; B58 (2002), 153.
Programs
-
Maple
with(numtheory); read transforms; M:=500; A:=proc(N,d) if d mod 3 = 0 then 2^(N/d) else (1/3)*(2^(N/d)+2*cos(Pi*N/d)); fi; end; E:=proc(N) if N mod 2 = 0 then N*2^(N/2) + add( did(N/2,d)*phi(2*d)*2^(N/(2*d)),d=1..N/2) else (N/3)*(2^((N+1)/2)+2*cos(Pi*(N+1)/2)); fi; end; PP:=proc(N) (1/(4*N))*(add(did(N,d)*phi(d)*A(N,d), d=1..N)+E(N)); end; for N from 1 to M do lprint(N,PP(N)); od: # N. J. A. Sloane, Aug 10 2006
-
Mathematica
M = 40; did[m_, n_] := If[Mod[m, n] == 0, 1, 0]; A[n_, d_] := If[Mod[d, 3] == 0, 2^(n/d), (1/3)(2^(n/d) + 2 Cos[Pi n/d])]; EE[n_] := If[Mod[n, 2] == 0, n 2^(n/2) + Sum[did[n/2, d] EulerPhi[2d] 2^(n/(2d)), {d, 1, n/2}], (n/3)(2^((n+1)/2) + 2 Cos[Pi(n+1)/2])]; a[n_] := (1/(4n))(Sum[did[n, d] EulerPhi[d] A[n, d], {d, 1, n}] + EE[n]); Array[a, M] (* Jean-François Alcover, Apr 20 2020, from Maple *)
A214307 a(n) is the number of representative three-color bracelets (necklaces with turn over allowed) with n beads for n >= 3.
1, 2, 6, 20, 40, 106, 304, 731, 1936, 5769, 14343, 39583, 117957, 305576, 855474, 2565922, 6793516, 19242857, 57827068, 155681341, 444461623, 1337436721, 3645877447, 10471728930, 31534868169, 86818242806, 250543852080, 754851821246, 2094887707000
Offset: 3
Keywords
Comments
This is the third column (m=3) of triangle A213940.
The relevant p(n,3)= A008284(n,3) representative color multinomials have exponents (signatures) from the 3 part partitions of n, written with nonincreasing parts. E.g., n=6: [4,1,1], [3,2,1] and [2,2,2] (p(6,3)=3). The corresponding representative bracelets have the three-color multinomials c[1]^4*c[2]*c[3], c[1]^3*c[2]^2*c[3] and c[1]^2*c[2]^2*c[3]^2. Therefore, color c[1] is dominant, except for the last case.
Compare this with A027671 where also bracelets with less than three colors are included and not only three-color representatives are counted.
Number of n-length bracelets w over ternary alphabet {a,b,c} such that #(w,a) >= #(w,b) >= #(w,c) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226882). The number of 3 color bracelets up to permutations of colors is given by A056358. - Andrew Howroyd, Sep 26 2017
Examples
a(5) = A213939(5,4) + A213939(5,5) = 2 + 4 = 6 from the representative bracelets (with colors j for c[j], j=1,2,3) 11123, 11213, 11223, 11232, 12123 and 12213 , all taken cyclically. The first two have color signature (exponents) [3,1,1] and the other four ones have signature [2,2,1]. a(6) = A213939(6,5) + A213939(6,6) + A213939(6,7) = 3 + 6 + 11 = 20. The first three representative bracelets have color signature [4,1,1], the next six have signature [3,2,1] and the remaining 11 ones have signature [2,2,2]. The corresponding representative color multinomials are c[1]^4*c[2]*c[3], c[1]^3*c[2]^2*c[3] and c[1]^2*c[2]^2*c[3]^2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..200
Programs
-
PARI
Cyc(v)={my(g=fold(gcd,v), s=vecsum(v)); sumdiv(g, d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s} CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v)); if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))} a(n)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [3,3]); t/2} \\ Andrew Howroyd, Sep 26 2017
Formula
Extensions
Terms a(26) and beyond from Andrew Howroyd, Sep 26 2017
A278639 Number of pairs of orientable necklaces with n beads and up to 3 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.
0, 0, 0, 1, 3, 12, 38, 117, 336, 976, 2724, 7689, 21455, 60228, 168714, 475037, 1338861, 3788400, 10742588, 30556305, 87112059, 248967564, 713032782, 2046325125, 5883428618, 16944975048, 48880471500, 141212377489, 408509453511, 1183275193908, 3431504760514
Offset: 0
Keywords
Comments
Number of chiral bracelets of n beads using up to three different colors.
Examples
Example: The 3 orientable necklaces with 4 beads and the colors A, B and C are AABC, BBAC and CCAB. The turned-over necklaces AACB, BBCA and CCBA are not included in the count. For n=6, the three chiral pairs using just two colors are AABABB-AABBAB, AACACC-AACCAC, and BBCBCC-BBCCBC. The other 35 use three colors. - _Robert A. Russell_, Sep 24 2018
Crossrefs
Programs
-
Mathematica
mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,3],{x,0,mx}],x] k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) -(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)
Formula
G.f.: k=3, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} binomial(k,i)*x^i / (1 - k*x^2))/2.
For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
A321791 Table read by descending antidiagonals: T(n,k) is the number of unoriented cycles (bracelets) of length n using up to k available colors.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 6, 1, 0, 1, 6, 15, 20, 21, 8, 1, 0, 1, 7, 21, 35, 55, 39, 13, 1, 0, 1, 8, 28, 56, 120, 136, 92, 18, 1, 0, 1, 9, 36, 84, 231, 377, 430, 198, 30, 1, 0
Offset: 0
Examples
Table begins with T(0,0): 1 1 1 1 1 1 1 1 1 1 1 ... 0 1 2 3 4 5 6 7 8 9 10 ... 0 1 3 6 10 15 21 28 36 45 55 ... 0 1 4 10 20 35 56 84 120 165 220 ... 0 1 6 21 55 120 231 406 666 1035 1540 ... 0 1 8 39 136 377 888 1855 3536 6273 10504 ... 0 1 13 92 430 1505 4291 10528 23052 46185 86185 ... 0 1 18 198 1300 5895 20646 60028 151848 344925 719290 ... 0 1 30 498 4435 25395 107331 365260 1058058 2707245 6278140 ... 0 1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670 ... 0 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022 ... For T(3,3)=10, the unoriented cycles are 9 achiral (AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC) and 1 chiral pair (ABC-ACB).
Crossrefs
Programs
-
Mathematica
Table[If[k>0, DivisorSum[k, EulerPhi[#](n-k)^(k/#)&]/(2k) + ((n-k)^Floor[(k+1)/2]+(n-k)^Ceiling[(k+1)/2])/4, 1], {n, 0, 12}, {k, 0, n}] // Flatten
Formula
T(n,k) = [n==0] + [n>0] * (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/(2*n)) * Sum_{d|n} phi(d) * k^(n/d).
Linear recurrence for row n: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 1.
O.g.f. for column k >= 0: Sum_{n>=0} T(n,k)*x^n = 3/4 + (1 + k*x)^2/(4*(1 - k*x^2)) - (1/2) * Sum_{d >= 1} (phi(d)/d) * log(1 - k*x^d). - Petros Hadjicostas, Feb 07 2021
Comments