cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A152176 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations and reflections.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 14, 11, 3, 1, 1, 8, 31, 33, 16, 3, 1, 1, 17, 82, 137, 85, 27, 4, 1, 1, 22, 202, 478, 434, 171, 37, 4, 1, 1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1, 1, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1, 1, 121, 3838, 26148
Offset: 1

Views

Author

Vladeta Jovovic, Nov 27 2008

Keywords

Comments

Number of bracelet structures of length n using exactly k different colored beads. Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure. - Andrew Howroyd, Apr 06 2017
The number of achiral structures (A) is given in A140735 (odd n) and A293181 (even n). The number of achiral structures plus twice the number of chiral pairs (A+2C) is given in A152175. These can be used to determine A+C by taking half their average, as is done in the Mathematica program. - Robert A. Russell, Feb 24 2018
T(n,k)=pi_k(C_n) which is the number of non-equivalent partitions of the cycle on n vertices, with exactly k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Mohammad Hadi Shekarriz, Aug 21 2019

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,   1;
  1,  3,   2,    1;
  1,  3,   5,    2,    1;
  1,  7,  14,   11,    3,    1;
  1,  8,  31,   33,   16,    3,   1;
  1, 17,  82,  137,   85,   27,   4,  1;
  1, 22, 202,  478,  434,  171,  37,  4, 1;
  1, 43, 538, 1851, 2271, 1249, 338, 54, 5, 1;
  ...
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Columns 2-6 are A056357, A056358, A056359, A056360, A056361.
Row sums are A084708.
Partial row sums include A000011, A056353, A056354, A056355, A056356.
Cf. A081720, A273891, A008277 (set partitions), A284949 (up to reflection), A152175 (up to rotation).

Programs

  • Mathematica
    Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],
      1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],
      True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];
    Ach[n_, k_] := Ach[n, k] = Switch[k, 0, If[0==n, 1, 0], 1, If[n>0, 1, 0],
      (* else *) _, If[OddQ[n], Sum[Binomial[(n-1)/2, i] Ach[n-1-2i, k-1],
      {i, 0, (n-1)/2}], Sum[Binomial[n/2-1, i] (Ach[n-2-2i, k-1]
      + 2^i Ach[n-2-2i, k-2]), {i, 0, n/2-1}]]] (* achiral loops of length n, k colors *)
    Table[(CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x]
    + Table[Ach[n, k],{k,1,n}])/2, {n, 1, 20}] // Flatten (* Robert A. Russell, Feb 24 2018 *)
  • PARI
    \\ see A056391 for Polya enumeration functions
    T(n,k) = NonequivalentStructsExactly(DihedralPerms(n), k); \\ Andrew Howroyd, Oct 14 2017
    
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={(R(n) + Ach(n))/2}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

A027671 Number of necklaces with n beads of 3 colors, allowing turning over.

Original entry on oeis.org

1, 3, 6, 10, 21, 39, 92, 198, 498, 1219, 3210, 8418, 22913, 62415, 173088, 481598, 1351983, 3808083, 10781954, 30615354, 87230157, 249144711, 713387076, 2046856566, 5884491500, 16946569371, 48883660146, 141217160458, 408519019449, 1183289542815
Offset: 0

Views

Author

Keywords

Comments

Number of bracelets of n beads using up to three different colors. - Robert A. Russell, Sep 24 2018

Examples

			For n=2, the six bracelets are AA, AB, AC, BB, BC, and CC. - _Robert A. Russell_, Sep 24 2018
		

References

  • J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
  • M. Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pp. 245-246.

Crossrefs

a(n) = A081720(n,3), n >= 3. - Wolfdieter Lang, Jun 03 2012
Column 3 of A051137.
a(n) = A278639(n) + A182751(n+1).
Equals A001867 - A278639.

Programs

  • Mathematica
    Needs["Combinatorica`"];  Join[{1}, Table[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->3, {i,1,n}], {n,1,30}]] (* Geoffrey Critzer, Sep 29 2012 *)
    Needs["Combinatorica`"]; Join[{1}, Table[NumberOfNecklaces[n, 3, Dihedral], {n, 30}]] (* T. D. Noe, Oct 02 2012 *)
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-3*x^n]/n,{n,mx}]+(1+3 x+3 x^2)/(1-3 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[0] = 1; a[n_] := t[n, 3]; Array[a, 30, 0] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
    k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 1] (* Robert A. Russell, Sep 24 2018 *)
  • PARI
    a(n,k=3) = if(n==0,1,(k^floor((n+1)/2) + k^ceil((n+1)/2))/4 + (1/(2*n))* sumdiv(n, d, eulerphi(d)*k^(n/d) ) );
    vector(55,n,a(n-1)) \\ Joerg Arndt, Oct 20 2019

Formula

G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 3*x^n)/n + (1+3*x+3*x^2)/(1-3*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
a(0) = 1; a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=3 is the maximum number of colors.
(See A075195 formulas.) - Richard L. Ollerton, May 04 2021
2*a(n) = A182751(n+1) + A001867(n), n>0.

Extensions

More terms from Christian G. Bower

A002076 Number of equivalence classes of base-3 necklaces of length n, where necklaces are considered equivalent under both rotations and permutations of the symbols.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 26, 53, 146, 369, 1002, 2685, 7434, 20441, 57046, 159451, 448686, 1266081, 3588002, 10195277, 29058526, 83018783, 237740670, 682196949, 1961331314, 5648590737, 16294052602, 47071590147, 136171497650, 394427456121, 1143839943618, 3320824711205
Offset: 0

Views

Author

Keywords

Comments

Number of set partitions of an oriented cycle of length n with 3 or fewer subsets. - Robert A. Russell, Nov 05 2018

Examples

			E.g., a(2) = 2 as there are two equivalence classes of the 9 strings {00,01,02,10,11,12,20,21,22}: {00,11,22} form one equivalence class and {01,02,10,12,20,21} form the other. To see that (for example) 01 and 02 are equivalent, rotate 01 to 10 and then subtract 1 mod 3 from each element in 10 to get 02.
For a(6)=26, there are 18 achiral patterns (AAAAAA, AAAAAB, AAAABB, AAABAB, AAABBB, AABAAB, AABABB, ABABAB, AAAABC, AAABAC, AAABCB, AABAAC, AABBCC, AABCBC, AABCCB, ABABAC, ABACBC, ABCABC) and 8 chiral patterns in four pairs (AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC). - _Robert A. Russell_, Nov 05 2018
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A056353 (unoriented), A320743 (chiral), A182522 (achiral).

Programs

  • Mathematica
    Adn[d_, n_] := Module[{ c, t1, t2}, t2 = 0; For[c = 1, c <= d, c++, If[Mod[d, c] == 0 , t2 = t2 + (x^c/c)*(E^(c*z) - 1)]]; t1 = E^t2; t1 = Series[t1, {z, 0, n+1}]; Coefficient[t1, z, n]*n!]; Pn[n_] := Module[{ d, e, t1}, t1 = 0; For[d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*Adn[d, n/d]/n]]; t1/(1 - x)]; Pnq[n_, q_] := Module[{t1}, t1 = Series[Pn[n], {x, 0, q+1}] ; Coefficient[t1, x, q]]; a[n_] := Pnq[n, 3]; Print[1]; Table[Print[an = a[n]]; an, {n, 1, 28}] (* Jean-François Alcover, Oct 04 2013, after N. J. A. Sloane's Maple code *)
    (* This Mathematica program uses Gilbert and Riordan's recurrence formula, which they recommend for calculations: *)
    Adn[d_, n_] := Adn[d, n] = If[1==n, DivisorSum[d, x^# &],
      Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n-1], x] x]];
    Join[{1},Table[SeriesCoefficient[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &] /(n (1 - x)), {x, 0, 3}], {n,40}]]  (* Robert A. Russell, Feb 24 2018 *)
    From Robert A. Russell, May 29 2018: (Start)
    Join[{1},Table[(1/n) DivisorSum[n, EulerPhi[#] Which[Divisible[#, 6], 3 StirlingS2[n/#+2, 3] - 9 StirlingS2[n/#+1, 3] + 6 StirlingS2[n/#, 3], Divisible[#, 3], 2 StirlingS2[n/#+2, 3] - 7 StirlingS2[n/#+1, 3] + 6 StirlingS2[n/#, 3], Divisible[#, 2], 2 StirlingS2[n/#+2, 3] - 6 StirlingS2[n/#+1, 3] + 4 StirlingS2[n/#, 3], True, StirlingS2[n/#+2, 3] - 4 StirlingS2[n/#+1, 3] + 4 StirlingS2[n/#, 3]] &], {n,40}]] (* or *)
    mx = 40; CoefficientList[Series[1 - Sum[(EulerPhi[d] / d) Which[
      Divisible[d, 6], Log[1 - 3x^d], Divisible[d, 3], (Log[1 - 3x^d] +
      Log[1 - x^d]) / 2, Divisible[d, 2], 2 Log[1 - 3x^d] / 3, True, (Log[1 - 3x^d] + 3 Log[1 - x^d]) / 6], {d, 1, mx}], {x, 0, mx}], x]
    (End)
    (* Adnk(n,d,k) is coefficient of x^k in A(d,n)(x) from Gilbert & Riordan *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#]&], Boole[n==0 && k==0]]
    k=3; Join[{1},Table[Sum[DivisorSum[n,EulerPhi[#] Adnk[#,n/#,j] &],{j,k}]/n,{n,40}]] (* Robert A. Russell, Nov 05 2018 *)

Formula

Reference gives formula.
From Robert A. Russell, May 29 2018: (Start)
For n>0, a(n) = (1/n) * Sum_{d|n} phi(d) * ([d==0 mod 6] * (3*S2(n/d+2, 3) - 9*S2(n/d+1, 3) + 6*S2(n/d, 3)) + [d==3 mod 6] * (2*S2(n/d+2, 3) - 7*S2(n/d+1, 3) + 6*S2(n/d, 3)) + [d==2 mod 6 | d==4 mod 6] * (2*S2(n/d+2, 3) - 6*S2(n/d+1, 3) + 4*S2(n/d, 3)) + [d==1 mod 6 | d=5 mod 6] * (S2(n/d+2, 3) - 4*S2(n/d+1, 3) + 4*S2(n/d, 3))), where S2(n,k) is the Stirling subset number, A008277.
G.f.: 1 - Sum_{d>0} (phi(d) / d) * ([d==0 mod 6] * log(1-3x^d) +
[d==3 mod 6] * (log(1-3x^d) + log(1-x^d)) / 2 +
[d==2 mod 6 | d==4 mod 6] * 2*log(1-3x^d) / 3 +
[d==1 mod 6 | d=5 mod 6] * (log(1-3x^d) + 3*log(1-x^d)) / 6).
(End)

Extensions

Better description and more terms from Mark Weston (mweston(AT)uvic.ca), Oct 06 2001
a(0)=1 prepended by Robert A. Russell, Nov 05 2018

A182522 a(0) = 1; thereafter a(2*n + 1) = 3^n, a(2*n + 2) = 2 * 3^n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489
Offset: 0

Views

Author

Michael Somos, May 03 2012

Keywords

Comments

Row sums of triangle in A123149. - Philippe Deléham, May 04 2012
This is simply the classic sequence A038754 prefixed by a 1. - N. J. A. Sloane, Nov 23 2017
Binomial transform is A057960.
Range of row n of the circular Pascal array of order 6. - Shaun V. Ault, May 30 2014
a(n) is also the number of achiral color patterns in a row or cycle of length n using three or fewer colors. Two color patterns are the same if we permute the colors, so ABCAB=BACBA. For a cycle, we can rotate the colors, so ABCAB=CABAB. A row is achiral if it is the same as some color permutation of its reverse. Thus the reversal of ABCAB is BACBA, which is equivalent to ABCAB when we permute A and B. A cycle is achiral if it is the same as some rotation of some color permutation of its reverse. Thus CABAB reversed is BABAC. We can permute A and B to get ABABC and then rotate to get CABAB, so CABAB is achiral. It is interesting that the number of achiral color patterns is the same for rows and cycles. - Robert A. Russell, Mar 10 2018
Also, the number of walks of length n on the graph 0--1--2--3--4 starting at vertex 0. - Sean A. Irvine, Jun 03 2025

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 18*x^6 + 27*x^7 + 54*x^8 + ...
From _Robert A. Russell_, Mar 10 2018: (Start)
For a(4) = 6, the achiral color patterns for rows are AAAA, AABB, ABAB, ABBA, ABBC, and ABCA.  Note that for cycles AABB=ABBA and ABBC=ABCA.  The achiral patterns for cycles are AAAA, AAAB, AABB, ABAB, ABAC, and ABBC.  Note that AAAB and ABAC are not achiral rows.
For a(5) = 9, the achiral color patterns (for both rows and cycles) are AAAAA, AABAA, ABABA, ABBBA, AABCC, ABACA, ABBBC, ABCAB, and ABCBA. (End)
		

Crossrefs

Cf. A038754 (essentially the same sequence).
Also row sums of triangle in A169623.
Column 3 of A305749.
Cf. A124302 (oriented), A001998 (unoriented), A107767 (chiral), for rows, varying offsets.
Cf. A002076 (oriented), A056353 (unoriented), A320743 (chiral), for cycles.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 3*Self(n-2): n in [1..40]]; // Bruno Berselli, Mar 19 2013
    
  • Mathematica
    Join[{1}, RecurrenceTable[{a[1]==1, a[2]==2, a[n]==3 a[n-2]}, a, {n, 40}]] (* Bruno Berselli, Mar 19 2013 *)
    CoefficientList[Series[(1+x-x^2)/(1-3*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 14 2017 *)
    Table[If[EvenQ[n], StirlingS2[(n+6)/2,3] - 4 StirlingS2[(n+4)/2,3] + 5 StirlingS2[(n+2)/2,3] - 2 StirlingS2[n/2,3], StirlingS2[(n+5)/2,3] - 3 StirlingS2[(n+3)/2,3] + 2 StirlingS2[(n+1)/2,3]], {n,0,40}] (* Robert A. Russell, Oct 21 2018 *)
    Join[{1},Table[If[EvenQ[n], 2 3^((n-2)/2), 3^((n-1)/2)],{n,40}]] (* Robert A. Russell, Oct 28 2018 *)
  • Maxima
    makelist(if n=0 then 1 else (1+mod(n-1,2))*3^floor((n-1)/2), n, 0, 40); /* Bruno Berselli, Mar 19 2013 */
    
  • PARI
    {a(n) = if( n<1, n==0, n--; (n%2 + 1) * 3^(n \ 2))}
    
  • PARI
    my(x='x+O('x^50)); Vec((1+x-x^2)/(1-3*x^2)) \\ G. C. Greubel, Apr 14 2017
    
  • SageMath
    def A182522(n): return (3 -(3-2*sqrt(3))*((n+1)%2))*3^((n-3)/2) + int(n==0)/3
    [A182522(n) for n in range(41)] # G. C. Greubel, Jul 17 2023

Formula

G.f.: (1 + x - x^2) / (1 - 3*x^2).
Expansion of 1 / (1 - x / (1 - x / (1 + x / (1 + x)))) in powers of x.
a(n+1) = A038754(n).
a(n) = Sum_{k=0..n} A123149(n,k). - Philippe Deléham, May 04 2012
a(n) = (3-(1+(-1)^n)*(3-2*sqrt(3))/2)*sqrt(3)^(n-3) for n>0, a(0)=1. - Bruno Berselli, Mar 19 2013
a(0) = 1, a(1) = 1, a(n) = a(n-1) + a(n-2) if n is odd, and a(n) = a(n-1) + a(n-2) + a(n-3) if n is even. - Jon Perry, Mar 19 2013
For odd n = 2m-1, a(2m-1) = T(m,1)+T(m,2)+T(m,3) for triangle T(m,k) of A140735; for even n = 2m, a(2m) = T(m,1)+T(m,2)+T(m,3) for triangle T(m,k) of A293181. - Robert A. Russell, Mar 10 2018
From Robert A. Russell, Oct 21 2018: (Start)
a(2m) = S2(m+3,3) - 4*S2(m+2,3) + 5*S2(m+1,3) - 2*S2(m,3).
a(2m-1) = S2(m+2,3) - 3*S2(m+1,3) + 2*S2(m,3), where S2(n,k) is the Stirling subset number A008277.
a(n) = 2*A001998(n-1) - A124302(n) = A124302(n) - 2*A107767(n-1) = A001998(n-1) - A107767(n-1).
a(n) = 2*A056353(n) - A002076(n) = A002076(n) - 2*A320743(n) = A056353(n) - A320743(n).
a(n) = A057427(n) + A052551(n-2) + A304973(n). (End)

Extensions

Edited by Bruno Berselli, Mar 19 2013
Definition simplified by N. J. A. Sloane, Nov 23 2017

A320748 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an unoriented cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 6, 4, 1, 1, 2, 3, 7, 9, 8, 1, 1, 2, 3, 7, 11, 22, 9, 1, 1, 2, 3, 7, 12, 33, 40, 18, 1, 1, 2, 3, 7, 12, 36, 73, 100, 23, 1, 1, 2, 3, 7, 12, 37, 89, 237, 225, 44, 1, 1, 2, 3, 7, 12, 37, 92, 322, 703, 582, 63, 1, 1, 2, 3, 7, 12, 37, 93, 349, 1137, 2433, 1464, 122, 1, 1, 2, 3, 7, 12, 37, 93, 353, 1308, 4704, 8309, 3960, 190, 1, 1, 2, 3, 7, 12, 37, 93, 354, 1345, 5953, 19839, 30108, 10585, 362, 1
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted. An unoriented cycle counts each chiral pair as one, i.e., they are equivalent.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
T(n,k)=Pi_k(C_n) which is the number of non-equivalent partitions of the cycle on n vertices, with at most k parts. Two partitions P1 and P2 of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. - Bahman Ahmadi, Aug 21 2019
In other words, the number of n-bead bracelet structures using a maximum of k different colored beads. - Andrew Howroyd, Oct 30 2019

Examples

			Array begins with T(1,1):
1   1    1     1     1      1      1      1      1      1      1      1 ...
1   2    2     2     2      2      2      2      2      2      2      2 ...
1   2    3     3     3      3      3      3      3      3      3      3 ...
1   4    6     7     7      7      7      7      7      7      7      7 ...
1   4    9    11    12     12     12     12     12     12     12     12 ...
1   8   22    33    36     37     37     37     37     37     37     37 ...
1   9   40    73    89     92     93     93     93     93     93     93 ...
1  18  100   237   322    349    353    354    354    354    354    354 ...
1  23  225   703  1137   1308   1345   1349   1350   1350   1350   1350 ...
1  44  582  2433  4704   5953   6291   6345   6350   6351   6351   6351 ...
1  63 1464  8309 19839  28228  31284  31874  31944  31949  31950  31950 ...
1 122 3960 30108 88508 144587 171283 178190 179204 179300 179306 179307 ...
For T(7,2)=9, the patterns are AAAAAAB, AAAAABB, AAAABAB, AAAABBB, AAABAAB, AAABABB, AABAABB, AABABAB, and AAABABB; only the last is chiral, paired with AAABBAB.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums of A152176.
For increasing k, columns converge to A084708.
Cf. A320747 (oriented), A320742 (chiral), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_,k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n + Ach[n,j])/2, {j,k-n+1}], {k,15}, {n,k}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n) + Ach(n))/2); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = Sum_{j=1..k} Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = (A320747(n,k) + A305749(n,k)) / 2 = A320747(n,k) - A320742(n,k) = A320742(n,k) + A305749(n,k).

A056358 Number of bracelet structures using exactly three different colored beads.

Original entry on oeis.org

0, 0, 1, 2, 5, 14, 31, 82, 202, 538, 1401, 3838, 10395, 28890, 80207, 225368, 634265, 1796648, 5100325, 14535298, 41513434, 118880650, 341094843, 980665898, 2824223495, 8146908210, 23535345372, 68084937912, 197211483155, 571915789978, 1660402195255, 4825554617686
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 3 of A152176.

Formula

a(n) = A056353(n) - A000011(n).

Extensions

Terms a(28) and beyond from Andrew Howroyd, Oct 24 2019

A056359 Number of bracelet structures using exactly four different colored beads.

Original entry on oeis.org

0, 0, 0, 1, 2, 11, 33, 137, 478, 1851, 6845, 26148, 98406, 374010, 1416251, 5380907, 20440250, 77795428, 296384565, 1131011633, 4321964768, 16541275068, 63400061153, 243358803904, 935431121462, 3600520831215, 13876485252323, 53546253055179, 206864927506166, 800068244639812
Offset: 1

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A152176.

Formula

a(n) = A056354(n) - A056353(n).

Extensions

Terms a(27) and beyond from Andrew Howroyd, Oct 24 2019

A056362 Number of primitive (period n) bracelet structures using a maximum of three different colored beads.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 18, 39, 94, 222, 572, 1463, 3934, 10584, 29211, 80808, 226430, 636320, 1800318, 5107479, 14548360, 41538874, 118927919, 341187047, 980838750, 2824561080, 8147547156, 23536592010, 68087313892, 197216119544, 571924673368, 1660419530055, 4825587979390
Offset: 0

Views

Author

Keywords

Comments

Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Formula

a(n) = Sum_{d|n} mu(d)*A056353(n/d) for n > 0.
a(n) = Sum_{k=1..3} A276543(n, k) for n > 0. - Andrew Howroyd, Oct 26 2019

Extensions

a(0)=1 prepended and terms a(28) and beyond from Andrew Howroyd, Oct 26 2019

A114438 Number of Barlow packings that repeat after n (or a divisor of n) layers.

Original entry on oeis.org

0, 1, 1, 2, 1, 4, 3, 8, 8, 18, 21, 48, 63, 133, 205, 412, 685, 1354, 2385, 4644, 8496, 16431, 30735, 59344, 112531, 217246, 415628, 803210, 1545463, 2991192, 5778267, 11201884, 21702708, 42141576, 81830748, 159140896, 309590883, 602938099, 1174779397, 2290920128
Offset: 1

Views

Author

N. J. A. Sloane, Feb 28 2006; more terms, Aug 10 2006

Keywords

Comments

See A011768 for the number of Barlow packings that repeat after exactly n layers.
Like A056353 but with additional restriction that adjacent beads must have different colors.

Crossrefs

Programs

  • Maple
    with(numtheory); read transforms; M:=500;
    A:=proc(N,d) if d mod 3 = 0 then 2^(N/d) else (1/3)*(2^(N/d)+2*cos(Pi*N/d)); fi; end;
    E:=proc(N) if N mod 2 = 0 then N*2^(N/2) + add( did(N/2,d)*phi(2*d)*2^(N/(2*d)),d=1..N/2) else (N/3)*(2^((N+1)/2)+2*cos(Pi*(N+1)/2)); fi; end;
    PP:=proc(N) (1/(4*N))*(add(did(N,d)*phi(d)*A(N,d), d=1..N)+E(N)); end; for N from 1 to M do lprint(N,PP(N)); od: # N. J. A. Sloane, Aug 10 2006
  • Mathematica
    M = 40;
    did[m_, n_] := If[Mod[m, n] == 0, 1, 0];
    A[n_, d_] := If[Mod[d, 3] == 0, 2^(n/d), (1/3)(2^(n/d) + 2 Cos[Pi n/d])];
    EE[n_] := If[Mod[n, 2] == 0, n 2^(n/2) + Sum[did[n/2, d] EulerPhi[2d] 2^(n/(2d)), {d, 1, n/2}], (n/3)(2^((n+1)/2) + 2 Cos[Pi(n+1)/2])];
    a[n_] := (1/(4n))(Sum[did[n, d] EulerPhi[d] A[n, d], {d, 1, n}] + EE[n]);
    Array[a, M] (* Jean-François Alcover, Apr 20 2020, from Maple *)

A320743 Number of chiral pairs of color patterns (set partitions) in a cycle of length n using 3 or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 13, 46, 144, 420, 1221, 3474, 9856, 27794, 78632, 222156, 629760, 1787440, 5087797, 14509580, 41479867, 118811286, 341009901, 980488510, 2824029648, 8146494860, 23534997912, 68084154502, 197211336576, 571915188840, 1660405181149, 4825559508106, 14038010213051, 40875403561680, 119122661856133, 347441159864556, 1014152747485696
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
There are nonrecursive formulas, generating functions, and computer programs for A002076 and A182522, which can be used in conjunction with the first formula.

Examples

			For a(6)=4, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, and AABACC-AABBAC.
		

Crossrefs

Column 3 of A320742.
Cf. A002076 (oriented), A056353 (unoriented), A182522 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    k=3; Table[Sum[(DivisorSum[n,EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j, k}], {n,40}]

Formula

a(n) = (A002076(n) - A182522(n)) / 2 = A002076(n) - A056353(n) = A056353(n) - A182522(n).
a(n) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where k=3 is the maximum number of colors, Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)), and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
a(n) = A059053(n) + A320643(n).
Showing 1-10 of 10 results.