cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000011 Number of n-bead necklaces (turning over is allowed) where complements are equivalent.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 9, 18, 23, 44, 63, 122, 190, 362, 612, 1162, 2056, 3914, 7155, 13648, 25482, 48734, 92205, 176906, 337594, 649532, 1246863, 2405236, 4636390, 8964800, 17334801, 33588234, 65108062, 126390032, 245492244, 477353376, 928772650, 1808676326, 3524337980
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of minimal fibrations of a bidirectional n-cycle over the 2-bouquet up to precompositions with automorphisms of the n-cycle and postcomposition with automorphisms of the 2-bouquet. (Boldi et al.) - Sebastiano Vigna, Jan 08 2018
For n >= 3, also the number of distinct planar embeddings of the n-sunlet graph. - Eric W. Weisstein, May 21 2024

Examples

			From Jason Orendorff (jason.orendorff(AT)gmail.com), Jan 09 2009: (Start)
The binary bracelets for small n are:
  n: bracelets
  0: (the empty bracelet)
  1: 0
  2: 00, 01
  3: 000, 001
  4: 0000, 0001, 0011, 0101
  5: 00000, 00001, 00011, 00101
  6: 000000, 000001, 000011, 000101, 000111, 001001, 001011, 010101
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A320748.
Cf. A000013. Bisections give A000117 and A092668.
The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    with(numtheory): A000011 := proc(n) local s,d; if n = 0 then RETURN(1) else s := 2^(floor(n/2)); for d in divisors(n) do s := s+(phi(2*d)*2^(n/d))/(2*n); od; RETURN(s/2); fi; end;
  • Mathematica
    a[n_] := Fold[ #1 + EulerPhi[2#2]2^(n/#2)/(2n) &, 2^Floor[n/2], Divisors[n]]/2
    a[ n_] := If[ n < 1, Boole[n == 0], 2^Quotient[n, 2] / 2 + DivisorSum[ n, EulerPhi[2 #] 2^(n/#) &] / (4 n)]; (* Michael Somos, Dec 19 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2^(n\2) / 2 + sumdiv(n, k, eulerphi(2*k) * 2^(n/k)) / (4*n))}; /* Michael Somos, Jun 03 2002 */

Formula

a(n) = (A000013(n) + 2^floor(n/2))/2.

Extensions

Better description from Christian G. Bower
More terms from David W. Wilson, Jan 13 2000

A320742 Array read by antidiagonals: T(n,k) is the number of chiral pairs of color patterns (set partitions) in a cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 6, 13, 2, 0, 0, 0, 0, 0, 0, 6, 30, 46, 7, 0, 0, 0, 0, 0, 0, 6, 34, 130, 144, 12, 0, 0, 0, 0, 0, 0, 6, 34, 181, 532, 420, 31, 0, 0, 0, 0, 0, 0, 6, 34, 190, 871, 2006, 1221, 58, 0, 0, 0, 0, 0, 0, 6, 34, 190, 996, 4016, 7626, 3474, 126, 0, 0, 0, 0, 0, 0, 6, 34, 190, 1011, 5070, 18526, 28401, 9856, 234, 0
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

Examples

			Array begins with T(1,1):
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    4     6     6      6      6      6      6      6      6      6 ...
0  1   13    30    34     34     34     34     34     34     34     34 ...
0  2   46   130   181    190    190    190    190    190    190    190 ...
0  7  144   532   871    996   1011   1011   1011   1011   1011   1011 ...
0 12  420  2006  4016   5070   5328   5352   5352   5352   5352   5352 ...
0 31 1221  7626 18526  26454  29215  29705  29740  29740  29740  29740 ...
0 58 3474 28401 85101 139484 165164 171556 172415 172466 172466 172466 ...
For T(6,4)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD and AABCBD-AABCDC.
		

Crossrefs

Partial row sums of A320647.
For increasing k, columns converge to A320749.
Cf. A320747 (oriented), A320748 (unoriented), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_,k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j,k-n+1}], {k,15}, {n,k}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n) - Ach(n))/2); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = (A320747(n,k) - A305749(n,k)) / 2 = A320747(n,k) - A320748(n,k)= A320748(n,k) - A305749(n,k).

A324802 T(n,k) is the number of non-equivalent distinguishing partitions of the cycle on n vertices with exactly k parts. Regular triangle read by rows, n >= 1, 1 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 1, 12, 17, 4, 0, 0, 0, 2, 43, 82, 49, 9, 0, 0, 0, 7, 137, 388, 339, 125, 15, 0, 0, 0, 12, 404, 1572, 1994, 1044, 254, 24, 0, 0, 0, 31, 1190, 6405, 10900, 7928, 2761, 490, 35, 0, 0, 0, 57, 3394, 24853, 56586, 54272, 25609, 6365, 850, 51, 0, 0
Offset: 1

Views

Author

Bahman Ahmadi, Sep 04 2019

Keywords

Comments

The cycle graph is defined for n>=3; extended to n=1,2 using the closed form.
Two partitions P1 and P2 of a the vertex set of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. A distinguishing partition is a partition of the vertex set of G such that no nontrivial automorphism of G can preserve it. Here T(n,k)=xi_k(C_n), the number of non-equivalent distinguishing partitions of the cycle on n vertices, with exactly k parts.
Number of n-bead bracelet structures using exactly k different colored beads that are not self-equivalent under either a nonzero rotation or reversal (turning over bracelet). Comparable sequences for unoriented (reversible) strings and necklaces (cyclic group) are A320525 and A327693. - Andrew Howroyd, Sep 23 2019

Examples

			Triangle begins:
  0;
  0,  0;
  0,  0,   0;
  0,  0,   0,    0;
  0,  0,   0,    0,    0;
  0,  0,   4,    2,    0,    0;
  0,  1,  12,   17,    4,    0,   0;
  0,  2,  43,   82,   49,    9,   0,  0;
  0,  7, 137,  388,  339,  125,  15,  0, 0;
  0, 12, 404, 1572, 1994, 1044, 254, 24, 0, 0;
  ...
For n=7, we can partition the vertices of the cycle C_7 with exactly 3 parts, in 12 ways, such that all these partitions are distinguishing for C_7 and that all the 12 partitions are non-equivalent. The partitions are as follows:
    { { 1 }, { 2, 3 }, { 4, 5, 6, 7 } },
    { { 1 }, { 2, 3, 4, 6 }, { 5, 7 } },
    { { 1 }, { 2, 3, 4, 7 }, { 5, 6 } },
    { { 1 }, { 2, 3, 5, 6 }, { 4, 7 } },
    { { 1 }, { 2, 3, 5, 7 }, { 4, 6 } },
    { { 1 }, { 2, 3, 6 }, { 4, 5, 7 } },
    { { 1 }, { 2, 3, 7 }, { 4, 5, 6 } },
    { { 1 }, { 2, 4, 5, 6 }, { 3, 7 } },
    { { 1 }, { 2, 4, 7 }, { 3, 5, 6 } },
    { { 1, 2 }, { 3, 4, 6 }, { 5, 7 } },
    { { 1, 2 }, { 3, 5, 6 }, { 4, 7 } },
    { { 1, 2, 4 }, { 3, 6 }, { 5, 7 } }.
From _Andrew Howroyd_, Sep 23 2019: (Start)
For n=6, k=4 the partitions are:
    { { 1, 2, 4 }, { 3 }, { 5 }, { 6 } },
    { { 1, 2 }, { 3, 5 }, { 4 }, { 6 } }.
These correspond to the bracelet structures AABACD and AABCBD.
(End)
		

Crossrefs

Column k=2 is A327734.
Row sums are A327740.

Formula

T(n,k) = A324803(n,k) - A324803(n,k-1).

Extensions

a(56)-a(78) from Andrew Howroyd, Sep 23 2019

A320747 Array read by antidiagonals: T(n,k) is the number of color patterns (set partitions) in an oriented cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 6, 4, 1, 1, 2, 3, 7, 9, 8, 1, 1, 2, 3, 7, 11, 26, 10, 1, 1, 2, 3, 7, 12, 39, 53, 20, 1, 1, 2, 3, 7, 12, 42, 103, 146, 30, 1, 1, 2, 3, 7, 12, 43, 123, 367, 369, 56, 1, 1, 2, 3, 7, 12, 43, 126, 503, 1235, 1002, 94, 1, 1, 2, 3, 7, 12, 43, 127, 539, 2008, 4439, 2685, 180, 1, 1, 2, 3, 7, 12, 43, 127, 543, 2304, 8720, 15935, 7434, 316, 1, 1, 2, 3, 7, 12, 43, 127, 544, 2356, 11023, 38365, 58509, 20441, 596, 1
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted. An oriented cycle counts each chiral pair as two.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.
In other words, the number of n-bead necklace structures using a maximum of k different colored beads. - Andrew Howroyd, Oct 30 2019

Examples

			Array begins with T(1,1):
1   1    1     1      1      1      1      1      1      1      1      1 ...
1   2    2     2      2      2      2      2      2      2      2      2 ...
1   2    3     3      3      3      3      3      3      3      3      3 ...
1   4    6     7      7      7      7      7      7      7      7      7 ...
1   4    9    11     12     12     12     12     12     12     12     12 ...
1   8   26    39     42     43     43     43     43     43     43     43 ...
1  10   53   103    123    126    127    127    127    127    127    127 ...
1  20  146   367    503    539    543    544    544    544    544    544 ...
1  30  369  1235   2008   2304   2356   2360   2361   2361   2361   2361 ...
1  56 1002  4439   8720  11023  11619  11697  11702  11703  11703  11703 ...
1  94 2685 15935  38365  54682  60499  61579  61684  61689  61690  61690 ...
1 180 7434 58509 173609 284071 336447 349746 351619 351766 351772 351773 ...
For T(4,2)=4, the patterns are AAAA, AAAB, AABB, and ABAB.
For T(4,3)=6, the patterns are the above four, AABC and ABAC.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Partial row sums of A152175.
For increasing k, columns converge to A084423.
Cf. A320748 (unoriented), A320742 (chiral), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[Sum[DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j] &], {j,k-n+1}]/n, {k,15}, {n,k}] // Flatten
  • PARI
    \\ R is A152175 as square matrix
    R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=R(n)); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = (1/n)*Sum_{j=1..k} Sum_{d|n} phi(d)*A(d,n/d,j), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = A320748(n,k) + A320742(n,k) = 2*A320748(n,k) - A305749(n,k) = A305749(n,k) + 2*A320742(n,k).

A324803 T(n,k) is the number of non-equivalent distinguishing partitions of the cycle on n vertices with at most k part. Square array read by descending antidiagonals, n >= 1, k >= 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 6, 13, 2, 0, 0, 0, 0, 0, 0, 6, 30, 45, 7, 0, 0, 0, 0, 0, 0, 6, 34, 127, 144, 12, 0, 0, 0, 0, 0, 0, 6, 34, 176, 532, 416, 31, 0, 0, 0, 0, 0, 0, 6, 34, 185, 871, 1988, 1221, 57, 0, 0, 0, 0, 0, 0, 6, 34, 185, 996, 3982
Offset: 1

Views

Author

Bahman Ahmadi, Sep 04 2019

Keywords

Comments

The cycle graph is defined for n >= 3; extended to n=1,2 using the closed form.
Two partitions P1 and P2 of a the vertex set of a graph G are said to be equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. A distinguishing partition is a partition of the vertex set of G such that no nontrivial automorphism of G can preserve it. Here T(n,k)=Xi_k(C_n), the number of non-equivalent distinguishing partitions of the cycle on n vertices, with at most k parts.

Examples

			Table begins:
=================================================================
  n/k | 1   2    3     4     5     6     7     8     9    10
------+----------------------------------------------------------
    1 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
    2 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
    3 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
    4 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
    5 | 0,  0,   0,    0,    0,    0,    0,    0,    0,    0, ...
    6 | 0,  0,   4,    6,    6,    6,    6,    6,    6,    6, ...
    7 | 0,  1,  13,   30,   34,   34,   34,   34,   34,   34, ...
    8 | 0,  2,  45,  127,  176,  185,  185,  185,  185,  185, ...
    9 | 0,  7, 144,  532,  871,  996, 1011, 1011, 1011, 1011, ...
   10 | 0, 12, 416, 1988, 3982, 5026, 5280, 5304, 5304, 5304, ...
  ...
For n=7, we can partition the vertices of the cycle C_7 with at most 3 parts, in 13 ways, such that all these partitions are distinguishing for C_7 and that all the 13 partitions are non-equivalent. The partitions are as follows:
    { { 1 }, { 2, 3 }, { 4, 5, 6, 7 } },
    { { 1 }, { 2, 3, 4, 6 }, { 5, 7 } },
    { { 1 }, { 2, 3, 4, 7 }, { 5, 6 } },
    { { 1 }, { 2, 3, 5, 6 }, { 4, 7 } },
    { { 1 }, { 2, 3, 5, 7 }, { 4, 6 } },
    { { 1 }, { 2, 3, 6 }, { 4, 5, 7 } },
    { { 1 }, { 2, 3, 7 }, { 4, 5, 6 } },
    { { 1 }, { 2, 4, 5, 6 }, { 3, 7 } },
    { { 1 }, { 2, 4, 7 }, { 3, 5, 6 } },
    { { 1, 2 }, { 3, 4, 6 }, { 5, 7 } },
    { { 1, 2 }, { 3, 5, 6 }, { 4, 7 } },
    { { 1, 2, 4 }, { 3, 6 }, { 5, 7 } },
    { { 1, 2, 3, 5 }, { 4, 6, 7 } }.
		

Crossrefs

Formula

T(n,k) = Sum_{i<=k} A324802(n,i).
Showing 1-5 of 5 results.