cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A027671 Number of necklaces with n beads of 3 colors, allowing turning over.

Original entry on oeis.org

1, 3, 6, 10, 21, 39, 92, 198, 498, 1219, 3210, 8418, 22913, 62415, 173088, 481598, 1351983, 3808083, 10781954, 30615354, 87230157, 249144711, 713387076, 2046856566, 5884491500, 16946569371, 48883660146, 141217160458, 408519019449, 1183289542815
Offset: 0

Views

Author

Keywords

Comments

Number of bracelets of n beads using up to three different colors. - Robert A. Russell, Sep 24 2018

Examples

			For n=2, the six bracelets are AA, AB, AC, BB, BC, and CC. - _Robert A. Russell_, Sep 24 2018
		

References

  • J. L. Fisher, Application-Oriented Algebra (1977), ISBN 0-7002-2504-8, circa p. 215.
  • M. Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pp. 245-246.

Crossrefs

a(n) = A081720(n,3), n >= 3. - Wolfdieter Lang, Jun 03 2012
Column 3 of A051137.
a(n) = A278639(n) + A182751(n+1).
Equals A001867 - A278639.

Programs

  • Mathematica
    Needs["Combinatorica`"];  Join[{1}, Table[CycleIndex[DihedralGroup[n], s]/.Table[s[i]->3, {i,1,n}], {n,1,30}]] (* Geoffrey Critzer, Sep 29 2012 *)
    Needs["Combinatorica`"]; Join[{1}, Table[NumberOfNecklaces[n, 3, Dihedral], {n, 30}]] (* T. D. Noe, Oct 02 2012 *)
    mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-3*x^n]/n,{n,mx}]+(1+3 x+3 x^2)/(1-3 x^2))/2,{x,0,mx}],x] (* Herbert Kociemba, Nov 02 2016 *)
    t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1+k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); a[0] = 1; a[n_] := t[n, 3]; Array[a, 30, 0] (* Jean-François Alcover, Nov 02 2017, after Maple code for A081720 *)
    k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 1] (* Robert A. Russell, Sep 24 2018 *)
  • PARI
    a(n,k=3) = if(n==0,1,(k^floor((n+1)/2) + k^ceil((n+1)/2))/4 + (1/(2*n))* sumdiv(n, d, eulerphi(d)*k^(n/d) ) );
    vector(55,n,a(n-1)) \\ Joerg Arndt, Oct 20 2019

Formula

G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 3*x^n)/n + (1+3*x+3*x^2)/(1-3*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
a(0) = 1; a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=3 is the maximum number of colors.
(See A075195 formulas.) - Richard L. Ollerton, May 04 2021
2*a(n) = A182751(n+1) + A001867(n), n>0.

Extensions

More terms from Christian G. Bower

A293496 Array read by antidiagonals: T(n,k) = number of chiral pairs of necklaces with n beads using a maximum of k colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 3, 0, 0, 0, 0, 10, 15, 12, 1, 0, 0, 0, 20, 45, 72, 38, 2, 0, 0, 0, 35, 105, 252, 270, 117, 6, 0, 0, 0, 56, 210, 672, 1130, 1044, 336, 14, 0, 0, 0, 84, 378, 1512, 3535, 5270, 3795, 976, 30, 0
Offset: 1

Views

Author

Andrew Howroyd, Oct 10 2017

Keywords

Comments

An orientable necklace when turned over does not leave it unchanged. Only one necklace in each pair is included in the count.
The number of chiral bracelets. An achiral bracelet is the same as its reverse, while a chiral bracelet is equivalent to its reverse. - Robert A. Russell, Sep 28 2018

Examples

			Array begins:
  ==========================================================
  n\k | 1  2    3     4      5       6        7        8
  ----+-----------------------------------------------------
   1  | 0  0    0     0      0       0        0        0 ...
   2  | 0  0    0     0      0       0        0        0 ...
   3  | 0  0    1     4     10      20       35       56 ...
   4  | 0  0    3    15     45     105      210      378 ...
   5  | 0  0   12    72    252     672     1512     3024 ...
   6  | 0  1   38   270   1130    3535     9156    20748 ...
   7  | 0  2  117  1044   5270   19350    57627   147752 ...
   8  | 0  6  336  3795  23520  102795   355656  1039626 ...
   9  | 0 14  976 14060 106960  556010  2233504  7440216 ...
  10  | 0 30 2724 51204 483756 3010098 14091000 53615016 ...
  ...
For T(3,4)=4, the chiral pairs are ABC-ACB, ABD-ADB, ACD-ADC, and BCD-BDC.
For T(4,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. - _Robert A. Russell_, Sep 28 2018
		

Crossrefs

Programs

  • Mathematica
    b[n_, k_] := (1/n)*DivisorSum[n, EulerPhi[#]*k^(n/#) &];
    c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2 + 1))/2, k^((n + 1)/2)];
    T[, 1] = T[1, ] = 0; T[n_, k_] := (b[n, k] - c[n, k])/2;
    Table[T[n - k + 1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 11 2017, translated from PARI *)
  • PARI
    \\ here b(n,k) is A075195 and c(n,k) is A284855
    b(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d));
    c(n, k) = if(n % 2 == 0, (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2));
    T(n, k) = (b(n, k) - c(n, k)) / 2;

Formula

T(n,k) = (A075195(n,k) - A284855(n,k)) / 2.
From Robert A. Russell, Sep 28 2018: (Start)
T(n, k) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/2n) * Sum_{d|n} phi(d) * k^(n/d)
G.f. for column k: -(kx/4)*(kx+x+2)/(1-kx^2) - Sum_{d>0} phi(d)*log(1-kx^d)/2d. (End)

A278640 Number of pairs of orientable necklaces with n beads and up to 4 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.

Original entry on oeis.org

0, 0, 0, 4, 15, 72, 270, 1044, 3795, 14060, 51204, 188604, 694130, 2572920, 9567090, 35758704, 134137875, 505159200, 1908554190, 7233104844, 27486506268, 104713296760, 399817262550, 1529746919604, 5864041395730, 22517964582504, 86607602546220, 333599838189804, 1286742419927070, 4969488707124120, 19215357085867800
Offset: 0

Views

Author

Herbert Kociemba, Nov 24 2016

Keywords

Comments

Number of chiral bracelets of n beads using up to four different colors.

Examples

			Example: For 3 beads and the colors A, B, C and D the 4 orientable necklaces are ABC, ABD, ACD and BCD. The turned-over necklaces ACB, ADB, ADC and BDC are not included in the count.
		

Crossrefs

Column 4 of A293496.
Cf. A059076 (2 colors), A278639 (3 colors).
Equals (A001868 - A056486) / 2 = A001868 - A032275 = A032275 - A056486.

Programs

  • Mathematica
    mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,4],{x,0,mx}],x]
    k=4; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

G.f.: k=4, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} Binomial[k,i]*x^i / ( 1-k*x^2) )/2.
For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=4 is the maximum number of colors. - Robert A. Russell, Sep 24 2018

A278641 Number of pairs of orientable necklaces with n beads and up to 5 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.

Original entry on oeis.org

0, 0, 0, 10, 45, 252, 1130, 5270, 23520, 106960, 483756, 2211650, 10149805, 46911060, 217868310, 1017057518, 4767797895, 22438419120, 105960938380, 501928967930, 2384171386941, 11353241261180, 54185968572450, 259150507387910, 1241763071712930, 5960463867187752, 28656077411358180, 137973711706163210
Offset: 0

Views

Author

Herbert Kociemba, Nov 24 2016

Keywords

Comments

Number of chiral bracelets of n beads using up to five different colors.

Crossrefs

Column 5 of A293496.
Cf. A059076 (2 colors), A278639 (3 colors), A278640 (4 colors).
a(n) = (A001869(n) - A056487(n+1)) / 2 = A032276(n) - A056487(n+1).
Equals A001869 - A032276.

Programs

  • Mathematica
    mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,5],{x,0,mx}],x]
    k=5; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

G.f.: k=5, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} Binomial[k,i]*x^i / ( 1-k*x^2) )/2.
For n>0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=5 is the maximum number of colors. - Robert A. Russell, Sep 24 2018

A278642 Number of pairs of orientable necklaces with n beads and up to 6 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.

Original entry on oeis.org

0, 0, 0, 20, 105, 672, 3535, 19350, 102795, 556010, 3010098, 16467450, 90619690, 502194420, 2798240265, 15671993560, 88156797855, 497837886000, 2821092554035, 16035752398770, 91403856697944, 522308167195260, 2991401733402075, 17168047238861070, 98716274117752900, 568605754068247644, 3280417827002225910, 18953525314104758810
Offset: 0

Views

Author

Herbert Kociemba, Nov 24 2016

Keywords

Comments

Number of chiral bracelets of n beads using up to six different colors.

Crossrefs

Column 6 of A293496.
Cf. A059076 (2 colors), A278639 (3 colors), A278640 (4 colors), A278641 (5 colors).

Programs

  • Mathematica
    mx = 40; f[x_, k_] := (1 - Sum[EulerPhi[n] * Log[1 - k * x^n]/n,{n, mx}] - Sum[Binomial[k, i] * x^i, {i, 0, 2}]/(1 - k * x^2))/2; CoefficientList[Series[f[x, 6], {x, 0, mx}], x]
    k = 6; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n + 1)/2] + k^Ceiling[(n + 1)/2])/4, {n, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)

Formula

Equals (A054625(n) - A056488(n)) / 2 = A054625(n) - A056341(n) = A056341(n) - A056488(n), for n >= 1.
G.f.: k = 6, (1 - Sum_{n >= 1} phi(n)*log(1 - k*x^n)/n - Sum_{i = 0..2} Binomial[k, i]*x^i / ( 1 - k*x^2) )/2.
For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k = 6 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
Showing 1-5 of 5 results.