A081720 Triangle T(n,k) read by rows, giving number of bracelets (turnover necklaces) with n beads of k colors (n >= 1, 1 <= k <= n).
1, 1, 3, 1, 4, 10, 1, 6, 21, 55, 1, 8, 39, 136, 377, 1, 13, 92, 430, 1505, 4291, 1, 18, 198, 1300, 5895, 20646, 60028, 1, 30, 498, 4435, 25395, 107331, 365260, 1058058, 1, 46, 1219, 15084, 110085, 563786, 2250311, 7472984, 21552969, 1, 78, 3210, 53764, 493131, 3037314
Offset: 1
Examples
1; (A000027) 1, 3; (A000217) 1, 4, 10; (A000292) 1, 6, 21, 55; (A002817) 1, 8, 39, 136, 377; (A060446) 1, 13, 92, 430, 1505, 4291; (A027670) 1, 18, 198, 1300, 5895, 20646, 60028; (A060532) 1, 30, 498, 4435, 25395, 107331, 365260, 1058058; (A060560) ... For example, when n=k=3, we have the following T(3,3)=10 bracelets of 3 beads using up to 3 colors: 000, 001, 002, 011, 012, 022, 111, 112, 122, and 222. (Note that 012 = 120 = 201 = 210 = 102 = 021.) _Petros Hadjicostas_, Nov 29 2017
References
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- Yi Hu, Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models, Master's Thesis, Duke Univ. (2021).
- Yi Hu and Patrick Charbonneau, Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices, arXiv:2106.08442 [cond-mat.stat-mech], 2021, cites the 4th column.
Crossrefs
Programs
-
Maple
A081720 := proc(n, k) local d, t1; t1 := 0; if n mod 2 = 0 then for d from 1 to n do if n mod d = 0 then t1 := t1+numtheory[phi](d)*k^(n/d); end if; end do: (t1+(n/2)*(1+k)*k^(n/2)) /(2*n) ; else for d from 1 to n do if n mod d = 0 then t1 := t1+numtheory[phi](d)*k^(n/d); end if; end do; (t1+n*k^((n+1)/2)) /(2*n) ; end if; end proc: seq(seq(A081720(n,k),k=1..n),n=1..10) ;
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2012, after Maple, updated Nov 02 2017 *) Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n,k,Dihedral],{k,1,n}],{n,1,8}]//Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
Formula
See Maple code.
From Petros Hadjicostas, Nov 29 2017: (Start)
T(n,k) = ((1+k)*k^{n/2}/2 + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is even, and = (k^{(n+1)/2} + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is odd.
G.f. for column k: (1/2)*((k*x+k*(k+1)*x^2/2)/(1-k*x^2) - Sum_{n>=1} (phi(n)/n)*log(1-k*x^n)) provided we chop off the Taylor expansion starting at x^k (and ignore all the terms x^n with n
(End)
2*n*T(n,k) = A054618(n,k)+n*(1+k)^(n/2)/2 if n even, = A054618(n,k)+n*k^((n+1)/2) if n odd. - R. J. Mathar, Jan 23 2022
Extensions
Name edited by Petros Hadjicostas, Nov 29 2017
A283846 Number of n-gonal inositol homologs with 2 kinds of achiral proligands.
2, 6, 10, 31, 68, 226, 650, 2259, 7542, 27036, 96350, 352786, 1294652, 4806366, 17912120, 67160083, 252710672, 954641186, 3617076710, 13744708060, 52358745532, 199914446106, 764881848410, 2932043941394, 11259015845684, 43303894193076, 166800053312630
Offset: 1
Keywords
Comments
Counts A032275 up to paired color permutation (equivalent to full color permutation on the 2-tuples of two subcolors, e.g., convert quaternary beads 0 1 2 3 to dibit beads 00 01 10 11). - Travis Scott, Jan 09 2023
Links
- Robert Israel, Table of n, a(n) for n = 1..1665
- Shinsaku Fujita, alpha-beta Itemized Enumeration of Inositol Derivatives and m-Gonal Homologs by Extending Fujita's Proligand Method, Bull. Chem. Soc. Jpn. 2017, 90, 343-366; doi:10.1246/bcsj.20160369. See Table 8.
- Yi Hu, Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models, Master's Thesis, Duke Univ. (2021).
- Yi Hu and Patrick Charbonneau, Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices, arXiv:2106.08442 [cond-mat.stat-mech], 2021.
Crossrefs
Programs
-
Maple
f:= proc(m) uses numtheory; if m::even then 1/(4*m)*add(phi(d)*4^(m/d)*`if`(d::even,2,1), d = divisors(m)) + 3*2^(m-2) else 1/(4*m)*add(phi(d)*4^(m/d),d=divisors(m))+2^(m-1) fi end proc: map(f, [$1..100]); # Robert Israel, Aug 21 2018
-
Mathematica
f[m_] := If[EvenQ[m], 1/(4m)*Sum[EulerPhi[d]*4^(m/d)*If[EvenQ[d], 2, 1], {d, Divisors[m]}]+ 3*2^(m-2), 1/(4m)*Sum[EulerPhi[d]*4^(m/d), {d, Divisors[m]}] + 2^(m-1)]; f /@ Range[1, 25] (* Jean-François Alcover, Feb 26 2019, after Robert Israel *)
Formula
From Robert Israel, Aug 21 2018 after Fujita (2017), Eq. (99)(set n=2, m=n): (Start)
if n is even, a(n) = (4*n)^(-1)*(Sum_{d|n} phi(d)*4^(n/d) + Sum_{d|n, d even} phi(d)*4^(n/d)) + 3*2^(n-2).
if n is odd, a(n) = 2^(n-1) + (4*n)^(-1)*Sum_{d|n} phi(d)*4^(n/d). (End)
Extensions
a(1)-a(2) prepended by Travis Scott, Jan 09 2023
A051137 Table T(n,k) read by antidiagonals: number of necklaces allowing turnovers (bracelets) with n beads of k colors.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 6, 10, 10, 5, 1, 1, 8, 21, 20, 15, 6, 1, 1, 13, 39, 55, 35, 21, 7, 1, 1, 18, 92, 136, 120, 56, 28, 8, 1, 1, 30, 198, 430, 377, 231, 84, 36, 9, 1, 1, 46, 498, 1300, 1505, 888, 406, 120, 45, 10, 1
Offset: 0
Examples
Table begins with T[0,1]: 1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 1 3 6 10 15 21 28 36 45 55 1 4 10 20 35 56 84 120 165 220 1 6 21 55 120 231 406 666 1035 1540 1 8 39 136 377 888 1855 3536 6273 10504 1 13 92 430 1505 4291 10528 23052 46185 86185 1 18 198 1300 5895 20646 60028 151848 344925 719290 1 30 498 4435 25395 107331 365260 1058058 2707245 6278140 1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022
Links
- C. G. Bower, Transforms (2)
Crossrefs
Programs
-
Mathematica
b[n_, k_] := DivisorSum[n, EulerPhi[#]*k^(n/#) &] / n; c[n_, k_] := If[EvenQ[n], (k^(n/2) + k^(n/2+1))/2, k^((n+1)/2)]; T[0, ] = 1; T[n, k_] := (b[n, k] + c[n, k])/2; Table[T[n, k-n], {k, 1, 11}, {n, k-1, 0, -1}] // Flatten (* Robert A. Russell, Sep 21 2018 after Jean-François Alcover *)
Formula
T(n, k) = (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/(2*n)) * Sum_{d divides n} phi(d) * k^(n/d). - Robert A. Russell, Sep 21 2018
G.f. for column k: (kx/4)*(kx+x+2)/(1-kx^2) - Sum_{d>0} phi(d)*log(1-kx^d)/2d. - Robert A. Russell, Sep 28 2018
T(n, k) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i). (See A075195 formulas.) - Richard L. Ollerton, May 04 2021
A214309 a(n) is the number of representative four-color bracelets (necklaces with turning over allowed) with n beads, for n >= 4.
3, 6, 26, 93, 424, 1180, 4844, 16165, 66953, 216804, 852822, 2949804, 12119134, 40886724, 160826008, 572457489, 2331396595, 8104270828, 32043699894, 115995102806, 471268872328, 1674576998468, 6641876380417, 24364816845446, 98894256728960, 357006263815751
Offset: 4
Keywords
Comments
This is the fourth column (m=4) of triangle A213940.
The relevant p(n,4)= A008284(n,4) representative color multinomials have exponents (signatures) from the 4 part partitions of n, written with nonincreasing parts. E.g., n=6: [3,1,1,1] and [2,2,1,1] (p(6,4)=2). The corresponding representative bracelets have the four-color multinomials c[1]^3*c[2]*c[3]*c[4] and c[1]^2*c[2]^2*c[3]*c[4].
Compare this with A032275 where also bracelets with less than four colors are included, and not only representatives are counted.
Number of n-length bracelets w over a 4-ary alphabet {a1,a2,...,a4} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a4) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226883). The number of 4 color bracelets up to permutations of colors is given by A056359. - Andrew Howroyd, Sep 26 2017
Examples
a(4) = A213939(4,5) = 3 from the representative bracelets (with colors j for c[j], j=1, 2, ..., 4) 1234, 1342 and 1423, all taken cyclically. The necklace cyclic(1324), for example, becomes equivalent to cyclic(1423) under the dihedral D_4 turning over (or reflection) operation. a(6) = A213939(6, 8) = A213939(6, 9) = 10 + 16 = 26. See the comment above for the representative color multinomials for each case.
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..200
Programs
-
PARI
Cyc(v)={my(g=fold(gcd,v), s=vecsum(v)); sumdiv(g, d, eulerphi(d)*(s/d)!/prod(i=1, #v, (v[i]/d)!))/s} CPal(v)={my(odds=#select(t->t%2,v), s=vecsum(v)); if(odds>2, 0, ((s-odds)/2)!/prod(i=1, #v, (v[i]\2)!))} a(n)={my(t=0); forpart(p=n, t+=Cyc(Vec(p))+CPal(Vec(p)), [1,n], [4,4]); t/2} \\ Andrew Howroyd, Sep 26 2017
Formula
Extensions
Terms a(26) and beyond from Andrew Howroyd, Sep 26 2017
A056344 Number of bracelets of length n using exactly four different colored beads.
0, 0, 0, 3, 24, 136, 612, 2619, 10480, 41388, 159780, 614058, 2341920, 8919816, 33905188, 128907279, 490213680, 1866127840, 7111777860, 27140369148, 103721218000, 396974781456, 1521577377012, 5840547488954
Offset: 1
Keywords
Comments
Turning over will not create a new bracelet.
Examples
For a(4)=3, the arrangements are ABCD, ABDC, and ACBD, all chiral, their reverses being ADCB, ACDB, and ADBC respectively.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Programs
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}]; a[n_] := T[n, 4]; Array[a, 24] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *) k=4; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 27 2018 *)
Formula
From Robert A. Russell, Sep 27 2018: (Start)
a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=4 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=4 is the number of colors.
A321791 Table read by descending antidiagonals: T(n,k) is the number of unoriented cycles (bracelets) of length n using up to k available colors.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 6, 1, 0, 1, 6, 15, 20, 21, 8, 1, 0, 1, 7, 21, 35, 55, 39, 13, 1, 0, 1, 8, 28, 56, 120, 136, 92, 18, 1, 0, 1, 9, 36, 84, 231, 377, 430, 198, 30, 1, 0
Offset: 0
Examples
Table begins with T(0,0): 1 1 1 1 1 1 1 1 1 1 1 ... 0 1 2 3 4 5 6 7 8 9 10 ... 0 1 3 6 10 15 21 28 36 45 55 ... 0 1 4 10 20 35 56 84 120 165 220 ... 0 1 6 21 55 120 231 406 666 1035 1540 ... 0 1 8 39 136 377 888 1855 3536 6273 10504 ... 0 1 13 92 430 1505 4291 10528 23052 46185 86185 ... 0 1 18 198 1300 5895 20646 60028 151848 344925 719290 ... 0 1 30 498 4435 25395 107331 365260 1058058 2707245 6278140 ... 0 1 46 1219 15084 110085 563786 2250311 7472984 21552969 55605670 ... 0 1 78 3210 53764 493131 3037314 14158228 53762472 174489813 500280022 ... For T(3,3)=10, the unoriented cycles are 9 achiral (AAA, AAB, AAC, ABB, ACC, BBB, BBC, BCC, CCC) and 1 chiral pair (ABC-ACB).
Crossrefs
Programs
-
Mathematica
Table[If[k>0, DivisorSum[k, EulerPhi[#](n-k)^(k/#)&]/(2k) + ((n-k)^Floor[(k+1)/2]+(n-k)^Ceiling[(k+1)/2])/4, 1], {n, 0, 12}, {k, 0, n}] // Flatten
Formula
T(n,k) = [n==0] + [n>0] * (k^floor((n+1)/2) + k^ceiling((n+1)/2)) / 4 + (1/(2*n)) * Sum_{d|n} phi(d) * k^(n/d).
Linear recurrence for row n: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 1.
O.g.f. for column k >= 0: Sum_{n>=0} T(n,k)*x^n = 3/4 + (1 + k*x)^2/(4*(1 - k*x^2)) - (1/2) * Sum_{d >= 1} (phi(d)/d) * log(1 - k*x^d). - Petros Hadjicostas, Feb 07 2021
A056345 Number of bracelets of length n using exactly five different colored beads.
0, 0, 0, 0, 12, 150, 1200, 7905, 46400, 255636, 1346700, 6901725, 34663020, 171786450, 843130688, 4110958530, 19951305240, 96528492700, 466073976900, 2247627076731, 10832193571460, 52194109216950
Offset: 1
Keywords
Comments
Turning over will not create a new bracelet.
Examples
For a(5)=12, pair up the 24 permutations of BCDE, each with its reverse, such as BCDE-EDCB. Precede the first of each pair with an A, such as ABCDE. These are the 12 arrangements, all chiral. If we precede the second of each pair with an A, such as AEDCB, we get the chiral partner of each. - _Robert A. Russell_, Sep 27 2018
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Crossrefs
Programs
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}]; a[n_] := T[n, 5]; Array[a, 22] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *) k=5; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 27 2018 *)
Formula
From Robert A. Russell, Sep 27 2018: (Start)
a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=5 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=5 is the number of colors. (End)
A214312 a(n) is the number of all four-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 4.
3, 120, 2040, 21420, 183330, 1320480, 8691480, 52727400, 303958710, 1674472800, 8928735816, 46280581620, 234611247780, 1166708558400, 5710351190400, 27565250985360, 131495088522060, 620771489730000, 2903870526350640, 13473567673441260, 62061657617625204, 283995655732351200
Offset: 4
Keywords
Comments
This is the fourth column (m=4) of triangle A214306.
Each 4 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say [p[1], p[2], p[3], p[4]], with p[1] >= p[2] >= p[3] >= p[4] >= 1, there are A213941(n,k)= A035206(n,k)*A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the k-th partition of n in Abramowitz-Stegun (A-St) order. See A213941 for more details. Here all p(n,4)= A008284(n,4) partitions of n with 4 parts are considered. The color repertoire for a bracelet with n beads is [c[1], ..., c[n]].
Compare this with A032275 where also bracelets with less than four colors are included, and the color repertoire is only [c[1], c[2], c[3], c[4]] for all n.
Examples
a(5) = A213941(5,6) = 120 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11234, 11243, 11324, 12134, 13124 and 14123, all six taken cyclically, each representing a class of order A035206(5,6) = 20 (if all 5 colors are used). For example, cyclic(11342) becomes equivalent to cyclic(11243) by turning over or reflection. The multiplicity 20 depends only on the color signature.
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..100
Programs
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); a56344[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}]; a[n_] := Binomial[n, 4]*a56344[n, 4]; Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
A278640 Number of pairs of orientable necklaces with n beads and up to 4 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.
0, 0, 0, 4, 15, 72, 270, 1044, 3795, 14060, 51204, 188604, 694130, 2572920, 9567090, 35758704, 134137875, 505159200, 1908554190, 7233104844, 27486506268, 104713296760, 399817262550, 1529746919604, 5864041395730, 22517964582504, 86607602546220, 333599838189804, 1286742419927070, 4969488707124120, 19215357085867800
Offset: 0
Keywords
Comments
Number of chiral bracelets of n beads using up to four different colors.
Examples
Example: For 3 beads and the colors A, B, C and D the 4 orientable necklaces are ABC, ABD, ACD and BCD. The turned-over necklaces ACB, ADB, ADC and BDC are not included in the count.
Crossrefs
Programs
-
Mathematica
mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,4],{x,0,mx}],x] k=4; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)
Formula
G.f.: k=4, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} Binomial[k,i]*x^i / ( 1-k*x^2) )/2.
For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=4 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
A056346 Number of bracelets of length n using exactly six different colored beads.
0, 0, 0, 0, 0, 60, 1080, 11970, 105840, 821952, 5874480, 39713550, 258136200, 1631273220, 10096734312, 61536377700, 370710950400, 2213749658880, 13132080672480, 77509456944318, 455754569692680
Offset: 1
Keywords
Comments
Turning over will not create a new bracelet.
Examples
For a(6)=60, pair up the 120 permutations of BCDEF, each with its reverse, such as BCDEF-FEDCB. Precede the first of each pair with an A, such as ABCDEF. These are the 60 arrangements, all chiral. If we precede the second of each pair with an A, such as AFEDCB, we get the chiral partner of each. - _Robert A. Russell_, Sep 27 2018
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Crossrefs
Programs
-
Mathematica
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}]; a[n_] := T[n, 6]; Array[a, 21] (* Jean-François Alcover, Nov 05 2017, after Andrew Howroyd *) k=6; Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,30}] (* Robert A. Russell, Sep 27 2018 *)
-
PARI
a(n) = my(k=6); (k!/4) * (stirling(floor((n+1)/2),k,2) + stirling(ceil((n+1)/2),k,2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Sep 29 2018
Formula
From Robert A. Russell, Sep 27 2018: (Start)
a(n) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where k=6 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=6 is the number of colors. (End)
Comments