A273891
Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
Offset: 1
Triangle begins with T(1,1):
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 18, 24, 12;
1, 11, 56, 136, 150, 60;
1, 16, 147, 612, 1200, 1080, 360;
1, 28, 411, 2619, 7905, 11970, 8820, 2520;
1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - _Robert A. Russell_, Sep 26 2018
-
(* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#,k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n,1,10}, {k,1,n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)
A056491
Number of periodic palindromes using exactly five different symbols.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 60, 120, 960, 1800, 9300, 16800, 71400, 126000, 480060, 834120, 2968560, 5103000, 17355300, 29607600, 97567800, 165528000, 533274060, 901020120, 2855012160, 4809004200, 15050517300, 25292030400, 78417448200, 131542866000, 404936532060
Offset: 1
For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome.
There are 120 permutations of the five letters used in ABACDEDC. These 120 arrangements can be paired up with a half turn (e.g., ABACDEDC-DEDCABAC) to arrive at the 60 arrangements for n=8. - _Robert A. Russell_, Sep 26 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
- Muniru A Asiru, Table of n, a(n) for n = 1..600
- Index entries for linear recurrences with constant coefficients, signature (1,14,-14,-71,71,154,-154,-120, 120).
-
a:=[0,0,0,0,0,0,0,60,120];; for n in [10..35] do a[n]:=a[n-1]+14*a[n-2]-14*a[n-3]-71*a[n-4]+71*a[n-5]+154*a[n-6]-154*a[n-7]-120*a[n-8]+120*a[n-9]; od; a; # Muniru A Asiru, Sep 26 2018
-
m:=50; R:=PowerSeriesRing(Integers(), m); [0, 0, 0, 0, 0, 0, 0] cat Coefficients(R!(-60*x^8*(x+1)/((x-1)*(2*x-1)*(2*x+1)*(2*x^2-1)*(3*x^2-1)*(5*x^2-1)))); // G. C. Greubel, Oct 13 2018
-
with(combinat): a:=n->(factorial(5)/2)*(Stirling2(floor((n+1)/2),5)+Stirling2(ceil((n+1)/2),5)): seq(a(n),n=1..35); # Muniru A Asiru, Sep 26 2018
-
k = 5; Table[(k!/2) (StirlingS2[Floor[(n + 1)/2], k] +
StirlingS2[Ceiling[(n + 1)/2], k]), {n, 1, 40}] (* Robert A. Russell, Jun 05 2018 *)
LinearRecurrence[{1, 14, -14, -71, 71, 154, -154, -120, 120}, {0, 0,
0, 0, 0, 0, 0, 60, 120}, 40] (* Robert A. Russell, Sep 29 2018 *)
-
a(n) = my(k=5); (k!/2)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)); \\ Michel Marcus, Jun 05 2018
A214313
a(n) is the number of all five-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 5.
Original entry on oeis.org
12, 900, 25200, 442680, 5846400, 64420272, 622175400, 5466166200, 44611306740, 343916472900, 2531921456064, 17956666859040, 123458676825120, 827056125453600, 5419508203393200, 34847210197637424, 220424306985639540, 1374479672119161300, 8463477229726134000, 51536194734146965920, 310706598354410079360
Offset: 5
a(6) = A213941(6,10) = 900 from the bracelet with color signature [2,1,1,1,1] and color repertoire [c[j], j=1, 2, ..., 6]. There are A213939(6,10) = 30 bracelets with representative color multinomials c[1]^2 c[2] c[3] c[4] c[5]. If the colors c[j] are taken as j, e.g., 112345, 112354, 112435, 112453, 112534, 112543, 113245, 113254, 113425, (113452 is equivalent to 112543 by turning over), 113524, (113542 ==112453), 114235, ..., 121345, ... (all taken cyclically). Each of these 30 bracelets represents a class of A035206(6,10) = 30 bracelets when all six colors are used. Thus a(6) = 30*30 = 900 = 12*75.
A056351
Number of primitive (period n) bracelets using exactly five different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 12, 150, 1200, 7905, 46400, 255624, 1346700, 6901575, 34663020, 171785250, 843130676, 4110950625, 19951305240, 96528446150, 466073976900, 2247626821095, 10832193570260, 52194107870250
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-4 of 4 results.
Comments