A228640
a(n) = Sum_{d|n} phi(d)*n^(n/d).
Original entry on oeis.org
0, 1, 6, 33, 280, 3145, 46956, 823585, 16781472, 387422001, 10000100440, 285311670721, 8916103479504, 302875106592409, 11112006930972780, 437893890382391745, 18446744078004651136, 827240261886336764449, 39346408075494964903956, 1978419655660313589124321
Offset: 0
-
[0] cat [&+[EulerPhi(d)*n^(n div d): d in Divisors(n)]:n in [1..20]]; // Marius A. Burtea, Feb 15 2020
-
with(numtheory):
a:= n-> add(phi(d)*n^(n/d), d=divisors(n)):
seq(a(n), n=0..20);
-
a[0] = 0; a[n_] := DivisorSum[n, EulerPhi[#]*n^(n/#)&]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 21 2017 *)
-
a(n) = if (n, sumdiv(n, d, eulerphi(d)*n^(n/d)), 0); \\ Michel Marcus, Feb 15 2020; corrected Jun 13 2022
-
a(n) = sum(k=1, n, n^gcd(k, n)); \\ Seiichi Manyama, Mar 10 2021
-
from sympy import totient, divisors
def A228640(n):
return sum(totient(d)*n**(n//d) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
A054630
T(n,k) = Sum_{d|k} phi(d)*n^(k/d)/k, triangle read by rows, T(n,k) for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
1, 2, 3, 3, 6, 11, 4, 10, 24, 70, 5, 15, 45, 165, 629, 6, 21, 76, 336, 1560, 7826, 7, 28, 119, 616, 3367, 19684, 117655, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 9, 45, 249, 1665, 11817, 88725, 683289, 5381685, 43046889, 10, 55, 340, 2530, 20008, 166870, 1428580, 12501280, 111111340, 1000010044
Offset: 1
Triangle starts:
1;
2, 3;
3, 6, 11;
4, 10, 24, 70;
5, 15, 45, 165, 629;
6, 21, 76, 336, 1560, 7826;
The 24 necklaces over {0,1,2} of length 4 are:
0000,0001,0002,0011,0012,0021,0022,0101,0102,0111,0112,0121,
0122,0202,0211,0212,0221,0222,1111,1112,1122,1212,1222,2222.
The 24 necklaces over {0,1,2,3} of length 3 are:
000,001,002,003,011,012,013,021,022,023,031,032,
033,111,112,113,122,123,132,133,222,223,233,333.
- D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.
- Peter Luschny, Rows 1..45, flattened
- H. Fredricksen and I. J. Kessler, An algorithm for generating necklaces of beads in two colors, Discrete Math. 61 (1986), 181-188.
- H. Fredricksen and J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences, Discrete Math. 23(3) (1978), 207-210. Reviewed in MR0523071 (80e:05007).
- Peter Luschny, Implementation of the FKM algorithm in SageMath and Julia.
- F. Ruskey, C. Savage, and T. M. Y. Wang, Generating necklaces, Journal of Algorithms, 13(3), 1992, 414-430.
- Index entries for sequences related to necklaces
-
A054630(n::Int, k::Int) = div(sum(n^gcd(i,k) for i in 1:k), k)
for n in 1:6
println([A054630(n, k) for k in 1:n])
end # Peter Luschny, Sep 10 2018
-
T := (n,k) -> add(n^igcd(i,k), i=1..k)/k:
seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 10 2018
-
T[n_, k_] := 1/k Sum[EulerPhi[d] n^(k/d), {d, Divisors[k]}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
-
def A054630(n,k): return (1/k)*add(euler_phi(d)*n^(k/d) for d in divisors(k))
for n in (1..9):
print([A054630(n,k) for k in (1..n)]) # Peter Luschny, Aug 12 2012
A054631
Triangle read by rows: row n (n >= 1) contains the numbers T(n,k) = Sum_{d|n} phi(d)*k^(n/d)/n, for k=1..n.
Original entry on oeis.org
1, 1, 3, 1, 4, 11, 1, 6, 24, 70, 1, 8, 51, 208, 629, 1, 14, 130, 700, 2635, 7826, 1, 20, 315, 2344, 11165, 39996, 117655, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684, 1, 60, 2195, 29144, 217045, 1119796, 4483815, 14913200, 43046889
Offset: 1
1;
1, 3; (A000217)
1, 4, 11; (A006527)
1, 6, 24, 70; (A006528)
1, 8, 51, 208, 629; (A054620)
1, 14, 130, 700, 2635, 7826; (A006565)
1, 20, 315, 2344, 11165, 39996, 117655; (A054621)
-
A054631 := proc(n,k) add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n) ) ; %/n ; end proc: # R. J. Mathar, Aug 30 2011
-
Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n, k, Cyclic], {k, 1, n}], {n, 1, 8}] //Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
t[n_, k_] := Sum[EulerPhi[d]*k^(n/d)/n, {d, Divisors[n]}]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
-
T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d))/n; \\ Seiichi Manyama, Mar 10 2021
-
T(n, k) = sum(j=1, n, k^gcd(j, n))/n; \\ Seiichi Manyama, Mar 10 2021
A054611
a(n) = Sum_{d|n} phi(d)*4^(n/d).
Original entry on oeis.org
0, 4, 20, 72, 280, 1040, 4200, 16408, 65840, 262296, 1049680, 4194344, 16782000, 67108912, 268451960, 1073744160, 4295033440, 17179869248, 68719747320, 274877907016, 1099512679520, 4398046544304, 17592190238920, 70368744177752
Offset: 0
-
A054611:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end;
-
a(n) = if(n==0, 0, sumdiv(n, d, eulerphi(d)*4^(n/d))); \\ Michel Marcus, Sep 19 2017
A054618
Triangle T(n,k) = Sum_{d|n} phi(d)*k^(n/d).
Original entry on oeis.org
1, 2, 6, 3, 12, 33, 4, 24, 96, 280, 5, 40, 255, 1040, 3145, 6, 84, 780, 4200, 15810, 46956, 7, 140, 2205, 16408, 78155, 279972, 823585, 8, 288, 6672, 65840, 391320, 1681008, 5767328, 16781472, 9, 540, 19755, 262296, 1953405, 10078164, 40354335, 134218800, 387422001
Offset: 1
1;
2, 6;
3, 12, 33;
4, 24, 96, 280;
5, 40, 255, 1040, 3145;
6, 84, 780, 4200, 15810, 46956;
...
-
with(numtheory):
T:= (n, k)-> add(phi(d)*k^(n/d), d=divisors(n)):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 28 2013
A054618 := proc(n, k)
add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n)) ;
end proc:
seq(seq(A054618(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jan 23 2022
-
T[n_, k_] := Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2015 *)
-
T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d)); \\ Michel Marcus, Feb 25 2015
Showing 1-5 of 5 results.
Comments