cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228640 a(n) = Sum_{d|n} phi(d)*n^(n/d).

Original entry on oeis.org

0, 1, 6, 33, 280, 3145, 46956, 823585, 16781472, 387422001, 10000100440, 285311670721, 8916103479504, 302875106592409, 11112006930972780, 437893890382391745, 18446744078004651136, 827240261886336764449, 39346408075494964903956, 1978419655660313589124321
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2013

Keywords

Crossrefs

Main diagonal of A054618, A054619, A185651.

Programs

  • Magma
    [0] cat [&+[EulerPhi(d)*n^(n div d): d in Divisors(n)]:n in [1..20]]; // Marius A. Burtea, Feb 15 2020
  • Maple
    with(numtheory):
    a:= n-> add(phi(d)*n^(n/d), d=divisors(n)):
    seq(a(n), n=0..20);
  • Mathematica
    a[0] = 0; a[n_] := DivisorSum[n, EulerPhi[#]*n^(n/#)&]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 21 2017 *)
  • PARI
    a(n) = if (n, sumdiv(n, d, eulerphi(d)*n^(n/d)), 0); \\ Michel Marcus, Feb 15 2020; corrected Jun 13 2022
    
  • PARI
    a(n) = sum(k=1, n, n^gcd(k, n)); \\ Seiichi Manyama, Mar 10 2021
    
  • Python
    from sympy import totient, divisors
    def A228640(n):
        return sum(totient(d)*n**(n//d) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
    

Formula

a(n) = Sum_{k=1..n} n^gcd(k,n) = n * A056665(n). - Seiichi Manyama, Mar 10 2021
a(n) = Sum_{k=1..n} n^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A054630 T(n,k) = Sum_{d|k} phi(d)*n^(k/d)/k, triangle read by rows, T(n,k) for n >= 1 and 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 6, 11, 4, 10, 24, 70, 5, 15, 45, 165, 629, 6, 21, 76, 336, 1560, 7826, 7, 28, 119, 616, 3367, 19684, 117655, 8, 36, 176, 1044, 6560, 43800, 299600, 2097684, 9, 45, 249, 1665, 11817, 88725, 683289, 5381685, 43046889, 10, 55, 340, 2530, 20008, 166870, 1428580, 12501280, 111111340, 1000010044
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000, revised Mar 21 2007

Keywords

Comments

T(n, k) is the number of n-ary necklaces of length k (see Ruskey, Savage and Wang). - Peter Luschny, Aug 12 2012, comment corrected at the suggestion of Petros Hadjicostas, Peter Luschny, Sep 10 2018
From Petros Hadjicostas, Sep 12 2018: (Start)
The programs by Peter Luschny below can generate all n-ary necklaces of length k (and all k-ary necklaces of length n) for any positive integer values of n and k, not just for 1 <= k <= n.
From the examples below, we see that the number of 4-ary necklaces of length 3 equals the number of 3-ary necklaces of length 4. The question is whether there are other pairs (n, k) of distinct positive integers such that the number of n-ary necklaces of length k equals the number of k-ary necklaces of length n.
(End)

Examples

			Triangle starts:
  1;
  2,  3;
  3,  6, 11;
  4, 10, 24, 70;
  5, 15, 45, 165,  629;
  6, 21, 76, 336, 1560, 7826;
The 24 necklaces over {0,1,2} of length 4 are:
  0000,0001,0002,0011,0012,0021,0022,0101,0102,0111,0112,0121,
  0122,0202,0211,0212,0221,0222,1111,1112,1122,1212,1222,2222.
The 24 necklaces over {0,1,2,3} of length 3 are:
  000,001,002,003,011,012,013,021,022,023,031,032,
  033,111,112,113,122,123,132,133,222,223,233,333.
		

References

  • D. E. Knuth, Generating All Tuples and Permutations. The Art of Computer Programming, Vol. 4, Fascicle 2, Addison-Wesley, 2005.

Crossrefs

Cf. A054631, A054618, A054619, A056665, A215474. Upper triangle of A075195.

Programs

  • Julia
    A054630(n::Int, k::Int) = div(sum(n^gcd(i,k) for i in 1:k), k)
    for n in 1:6
        println([A054630(n, k) for k in 1:n])
    end # Peter Luschny, Sep 10 2018
  • Maple
    T := (n,k) -> add(n^igcd(i,k), i=1..k)/k:
    seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 10 2018
  • Mathematica
    T[n_, k_] := 1/k Sum[EulerPhi[d] n^(k/d), {d, Divisors[k]}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
  • Sage
    def A054630(n,k): return (1/k)*add(euler_phi(d)*n^(k/d) for d in divisors(k))
    for n in (1..9):
        print([A054630(n,k) for k in (1..n)]) # Peter Luschny, Aug 12 2012
    

Formula

T(n,n) = A056665(n). - Peter Luschny, Aug 12 2012
T(n,k) = (1/k)*Sum_{i=1..k} n^gcd(i, k). - Peter Luschny, Sep 10 2018

A054631 Triangle read by rows: row n (n >= 1) contains the numbers T(n,k) = Sum_{d|n} phi(d)*k^(n/d)/n, for k=1..n.

Original entry on oeis.org

1, 1, 3, 1, 4, 11, 1, 6, 24, 70, 1, 8, 51, 208, 629, 1, 14, 130, 700, 2635, 7826, 1, 20, 315, 2344, 11165, 39996, 117655, 1, 36, 834, 8230, 48915, 210126, 720916, 2097684, 1, 60, 2195, 29144, 217045, 1119796, 4483815, 14913200, 43046889
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000, revised Mar 21 2007

Keywords

Comments

T(n,k) is the number of n-bead necklaces with up to k different colored beads. - Yves-Loic Martin, Sep 29 2020

Examples

			1;
1,  3;                                   (A000217)
1,  4,  11;                              (A006527)
1,  6,  24,   70;                        (A006528)
1,  8,  51,  208,   629;                 (A054620)
1, 14, 130,  700,  2635,  7826;          (A006565)
1, 20, 315, 2344, 11165, 39996, 117655;  (A054621)
		

Crossrefs

Cf. A054630, A054618, A054619, A087854. Lower triangle of A075195.

Programs

  • Maple
    A054631 := proc(n,k) add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n) ) ;  %/n ; end proc: # R. J. Mathar, Aug 30 2011
  • Mathematica
    Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n, k, Cyclic], {k, 1, n}], {n, 1, 8}] //Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
    t[n_, k_] := Sum[EulerPhi[d]*k^(n/d)/n, {d, Divisors[n]}]; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d))/n; \\ Seiichi Manyama, Mar 10 2021
    
  • PARI
    T(n, k) = sum(j=1, n, k^gcd(j, n))/n; \\ Seiichi Manyama, Mar 10 2021

Formula

T(n,k) = Sum_{j=1..k} binomial(k,j) * A087854(n, j). - Yves-Loic Martin, Sep 29 2020
T(n,k) = (1/n) * Sum_{j=1..n} k^gcd(j, n). - Seiichi Manyama, Mar 10 2021

A054611 a(n) = Sum_{d|n} phi(d)*4^(n/d).

Original entry on oeis.org

0, 4, 20, 72, 280, 1040, 4200, 16408, 65840, 262296, 1049680, 4194344, 16782000, 67108912, 268451960, 1073744160, 4295033440, 17179869248, 68719747320, 274877907016, 1099512679520, 4398046544304, 17592190238920, 70368744177752
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Crossrefs

Column k=4 of A185651.
Row n=4 of A054619.
Cf. A001868.

Programs

  • Maple
    A054611:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end;
  • PARI
    a(n) = if(n==0, 0, sumdiv(n, d, eulerphi(d)*4^(n/d))); \\ Michel Marcus, Sep 19 2017

Formula

a(n) = n * A001868(n).
a(n) = Sum_{k=1..n} 4^gcd(n,k). - Ilya Gutkovskiy, Apr 16 2021

A054618 Triangle T(n,k) = Sum_{d|n} phi(d)*k^(n/d).

Original entry on oeis.org

1, 2, 6, 3, 12, 33, 4, 24, 96, 280, 5, 40, 255, 1040, 3145, 6, 84, 780, 4200, 15810, 46956, 7, 140, 2205, 16408, 78155, 279972, 823585, 8, 288, 6672, 65840, 391320, 1681008, 5767328, 16781472, 9, 540, 19755, 262296, 1953405, 10078164, 40354335, 134218800, 387422001
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Dirichlet convolution of A000010(n) and k^n. - Richard L. Ollerton, May 10 2021

Examples

			1;
2, 6;
3, 12, 33;
4, 24, 96,  280;
5, 40, 255, 1040, 3145;
6, 84, 780, 4200, 15810, 46956;
...
		

Crossrefs

Main diagonal gives: A228640.
Cf. A000010.

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(phi(d)*k^(n/d), d=divisors(n)):
    seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Aug 28 2013
    A054618 := proc(n, k)
        add( numtheory[phi](d)*k^(n/d),d=numtheory[divisors](n)) ;
    end proc:
    seq(seq(A054618(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jan 23 2022
  • Mathematica
    T[n_, k_] := Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2015 *)
  • PARI
    T(n, k) = sumdiv(n, d, eulerphi(d)*k^(n/d)); \\ Michel Marcus, Feb 25 2015

Formula

From Richard L. Ollerton, May 10 2021: (Start)
T(n,k) = Sum_{i=1..n} k^gcd(n,i).
T(n,k) = Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)). (End)
Showing 1-5 of 5 results.