cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A185651 A(n,k) = Sum_{d|n} phi(d)*k^(n/d); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 20, 33, 24, 5, 0, 0, 6, 30, 72, 96, 40, 6, 0, 0, 7, 42, 135, 280, 255, 84, 7, 0, 0, 8, 56, 228, 660, 1040, 780, 140, 8, 0, 0, 9, 72, 357, 1344, 3145, 4200, 2205, 288, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 29 2013

Keywords

Comments

Dirichlet convolution of phi(n) and k^n. - Richard L. Ollerton, May 07 2021

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,     0,     0, ...
  0, 1,  2,   3,    4,     5,     6, ...
  0, 2,  6,  12,   20,    30,    42, ...
  0, 3, 12,  33,   72,   135,   228, ...
  0, 4, 24,  96,  280,   660,  1344, ...
  0, 5, 40, 255, 1040,  3145,  7800, ...
  0, 6, 84, 780, 4200, 15810, 46956, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= (n, k)-> add(phi(d)*k^(n/d), d=divisors(n)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[, 0] = a[0, ] = 0; a[n_, k_] := Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)

Formula

A(n,k) = Sum_{d|n} phi(d)*k^(n/d).
A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258170(n,i). - Alois P. Heinz, May 22 2015
G.f. for column k: Sum_{n>=1} phi(n)*k*x^n/(1-k*x^n) for k >= 0. - Petros Hadjicostas, Nov 06 2017
From Richard L. Ollerton, May 07 2021: (Start)
A(n,k) = Sum_{i=1..n} k^gcd(n,i).
A(n,k) = Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
A(n,k) = A075195(n,k)*n for n >= 1, k >= 1. (End)

A001868 Number of n-bead necklaces with 4 colors.

Original entry on oeis.org

1, 4, 10, 24, 70, 208, 700, 2344, 8230, 29144, 104968, 381304, 1398500, 5162224, 19175140, 71582944, 268439590, 1010580544, 3817763740, 14467258264, 54975633976, 209430787824, 799645010860, 3059510616424, 11728124734500, 45035996273872, 173215372864600, 667199944815064
Offset: 0

Views

Author

Keywords

Comments

From Richard L. Ollerton, May 07 2021: (Start)
Here, as in A000031, turning over is not allowed.
(1/n) * Dirichlet convolution of phi(n) and 4^n, n>0. (End)

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 162.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.112(a).

Crossrefs

Column 4 of A075195.
Cf. A054611.

Programs

  • Maple
    A001868 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+phi(d)*4^(n/d); od; RETURN(s/n); fi; end;
  • Mathematica
    a[n_] := (1/n)*Total[ EulerPhi[#]*4^(n/#) &  /@ Divisors[n]]; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Oct 21 2011 *)
    mx=40;CoefficientList[Series[1-Sum[EulerPhi[i] Log[1-4*x^i]/i,{i,1,mx}],{x,0,mx}],x] (* Herbert Kociemba, Nov 01 2016 *)
    k=4; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/n, {n, 1, 30}], 1] (* Robert A. Russell, Sep 21 2018 *)
  • PARI
    a(n) = if (n, sumdiv(n, d, eulerphi(d)*4^(n/d))/n, 1); \\ Michel Marcus, Nov 01 2016

Formula

a(n) = (1/n)*Sum_{d|n} phi(d)*4^(n/d) = A054611(n)/n, n>0.
G.f.: 1 - Sum_{n>=1} phi(n)*log(1 - 4*x^n)/n. - Herbert Kociemba, Nov 01 2016
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} 4^gcd(n,k). - Ilya Gutkovskiy, Apr 17 2021
a(0) = 1; a(n) = (1/n)*Sum_{k=1..n} 4^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A343498 a(n) = Sum_{k=1..n} gcd(k, n)^4.

Original entry on oeis.org

1, 17, 83, 274, 629, 1411, 2407, 4388, 6729, 10693, 14651, 22742, 28573, 40919, 52207, 70216, 83537, 114393, 130339, 172346, 199781, 249067, 279863, 364204, 393145, 485741, 545067, 659518, 707309, 887519, 923551, 1123472, 1216033, 1420129, 1514003, 1843746, 1874197
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Programs

  • Magma
    A343498:= func< n | (&+[d^4*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
    [A343498(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
    
  • Mathematica
    a[n_] := Sum[GCD[k, n]^4, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^4);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^4);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 3));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+11*x^k+11*x^(2*k)+x^(3*k))/(1-x^k)^5))
    
  • SageMath
    def A343498(n): return sum(k^4*euler_phi(n/k) for k in (1..n) if (k).divides(n))
    [A343498(n) for n in range(1,51)] # G. C. Greubel, Jun 24 2024

Formula

a(n) = Sum_{d|n} phi(n/d) * d^4.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_3(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 11*x^k + 11*x^(2*k) + x^(3*k))/(1 - x^k)^5.
Dirichlet g.f.: zeta(s-1) * zeta(s-4) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ Pi^4 * n^5 / (450*zeta(5)). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(3*e+4) - p^(3*e) - p + 1)/(p^3-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i, j, k, l <= n} gcd(i, j, k, l, n) = Sum_{d divides n} d * J_4(n/d), where the Jordan totient function J_4(n) = A059377(n). - Peter Bala, Jan 18 2024

A123045 Number of frieze patterns of length n under a certain group (see Pisanski et al. for precise definition).

Original entry on oeis.org

0, 2, 6, 12, 39, 104, 366, 1172, 4179, 14572, 52740, 190652, 700274, 2581112, 9591666, 35791472, 134236179, 505290272, 1908947406, 7233629132, 27488079132, 104715393912, 399823554006, 1529755308212, 5864066561554, 22517998136936, 86607703209516
Offset: 0

Views

Author

N. J. A. Sloane, Nov 11 2006

Keywords

Crossrefs

The 8 sequences in Table 8 of Fujita (2017) are A053656, A000011, A256216, A256217, A123045, A283846, A283847, A283848.

Programs

  • Maple
    with(numtheory):
    V:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end; # A054611
    H:=n-> if n mod 2 = 0 then (n/2)*4^(n/2); else 0; fi; # this is A018215 interleaved with 0's
    A123045:=n-> `if`(n=0,0, (V(n)+H(n))/(2*n));
  • Mathematica
    V[n_] := Module[{t1 = 0}, Do[t1 = t1 + EulerPhi[k] 4^(n/k), {k, Divisors[n]}]; t1];
    H[n_] := If[Mod[n, 2] == 0, (n/2) 4^(n/2), 0];
    a[n_] := If[n == 0, 0, (V[n] + H[n])/(2n)];
    a /@ Range[0, 26] (* Jean-François Alcover, Mar 20 2020, from Maple *)

Formula

See Maple program.

A343490 a(n) = Sum_{k=1..n} 4^(gcd(k, n) - 1).

Original entry on oeis.org

1, 5, 18, 70, 260, 1050, 4102, 16460, 65574, 262420, 1048586, 4195500, 16777228, 67112990, 268436040, 1073758360, 4294967312, 17179936830, 68719476754, 274878169880, 1099511636076, 4398047559730, 17592186044438, 70368748407000, 281474976711700, 1125899923619900
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Crossrefs

Column 4 of A343489.

Programs

  • Maple
    N:= 30: # for a(1)..a(N)
    G:= add(numtheory:-phi(k)*x^k/(1-4*x^k),k=1..N):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=1..N); # Robert Israel, Sep 11 2023
  • Mathematica
    a[n_] := Sum[4^(GCD[k, n] - 1), {k, 1, n}]; Array[a, 26] (* Amiram Eldar, Apr 17 2021 *)
  • PARI
    a(n) = sum(k=1, n, 4^(gcd(k, n)-1));
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*4^(d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-4*x^k)))

Formula

a(n) = Sum_{d|n} phi(n/d)*4^(d - 1) = A054611(n)/4.
G.f.: Sum_{k>=1} phi(k) * x^k / (1 - 4*x^k).
Showing 1-5 of 5 results.