cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A258170 T(n,k) = (1/k!) * Sum_{i=0..k} (-1)^(k-i) * C(k,i) * A185651(n,i); triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 8, 6, 1, 0, 5, 15, 25, 10, 1, 0, 6, 36, 91, 65, 15, 1, 0, 7, 63, 301, 350, 140, 21, 1, 0, 8, 136, 972, 1702, 1050, 266, 28, 1, 0, 9, 261, 3027, 7770, 6951, 2646, 462, 36, 1, 0, 10, 530, 9355, 34115, 42526, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, May 22 2015

Keywords

Examples

			Triangle T(n,k) begins:
  0;
  0,  1;
  0,  2,   1;
  0,  3,   3,    1;
  0,  4,   8,    6,     1;
  0,  5,  15,   25,    10,     1;
  0,  6,  36,   91,    65,    15,     1;
  0,  7,  63,  301,   350,   140,    21,    1;
  0,  8, 136,  972,  1702,  1050,   266,   28,   1;
  0,  9, 261, 3027,  7770,  6951,  2646,  462,  36,  1;
  0, 10, 530, 9355, 34115, 42526, 22827, 5880, 750, 45, 1;
		

Crossrefs

Columns k=0-1 give: A000004, A000027.
Row sums give A258171.
Main diagonal gives A057427.
T(2*n+1,n+1) gives A129506(n+1).

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember;
          add(phi(d)*k^(n/d), d=divisors(n))
        end:
    T:= (n, k)-> add((-1)^(k-i)*binomial(k, i)*A(n, i), i=0..k)/k!:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    A[n_, k_] := A[n, k] = DivisorSum[n, EulerPhi[#]*k^(n/#)&];
    T[n_, k_] := Sum[(-1)^(k-i)*Binomial[k, i]*A[n, i], {i, 0, k}]/k!; T[0, 0] = 0;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
  • Sage
    # uses[DivisorTriangle from A327029]
    DivisorTriangle(euler_phi, stirling_number2, 10) # Peter Luschny, Aug 24 2019

Formula

T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) * C(k,i) * A185651(n,i).
From Petros Hadjicostas, Sep 07 2018: (Start)
Conjecture 1: T(n,k) = Stirling2(n,k) for k >= 1 and k <= n <= 2*k - 1.
Conjecture 2: T(n,k) = Stirling2(n,k) for k >= 2 and n prime >= 2.
Here, Stirling2(n,k) = A008277(n,k).
(End)

A002378 Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).

Original entry on oeis.org

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
Offset: 0

Views

Author

Keywords

Comments

4*a(n) + 1 are the odd squares A016754(n).
The word "pronic" (used by Dickson) is incorrect. - Michael Somos
According to the 2nd edition of Webster, the correct word is "promic". - R. K. Guy
a(n) is the number of minimal vectors in the root lattice A_n (see Conway and Sloane, p. 109).
Let M_n denote the n X n matrix M_n(i, j) = (i + j); then the characteristic polynomial of M_n is x^(n-2) * (x^2 - a(n)*x - A002415(n)). - Benoit Cloitre, Nov 09 2002
The greatest LCM of all pairs (j, k) for j < k <= n for n > 1. - Robert G. Wilson v, Jun 19 2004
First differences are a(n+1) - a(n) = 2*n + 2 = 2, 4, 6, ... (while first differences of the squares are (n+1)^2 - n^2 = 2*n + 1 = 1, 3, 5, ...). - Alexandre Wajnberg, Dec 29 2005
25 appended to these numbers corresponds to squares of numbers ending in 5 (i.e., to squares of A017329). - Lekraj Beedassy, Mar 24 2006
A rapid (mental) multiplication/factorization technique -- a generalization of Lekraj Beedassy's comment: For all bases b >= 2 and positive integers n, c, d, k with c + d = b^k, we have (n*b^k + c)*(n*b^k + d) = a(n)*b^(2*k) + c*d. Thus the last 2*k base-b digits of the product are exactly those of c*d -- including leading 0(s) as necessary -- with the preceding base-b digit(s) the same as a(n)'s. Examples: In decimal, 113*117 = 13221 (as n = 11, b = 10 = 3 + 7, k = 1, 3*7 = 21, and a(11) = 132); in octal, 61*67 = 5207 (52 is a(6) in octal). In particular, for even b = 2*m (m > 0) and c = d = m, such a product is a square of this type. Decimal factoring: 5609 is immediately seen to be 71*79. Likewise, 120099 = 301*399 (k = 2 here) and 99990000001996 = 9999002*9999998 (k = 3). - Rick L. Shepherd, Jul 24 2021
Number of circular binary words of length n + 1 having exactly one occurrence of 01. Example: a(2) = 6 because we have 001, 010, 011, 100, 101 and 110. Column 1 of A119462. - Emeric Deutsch, May 21 2006
The sequence of iterated square roots sqrt(N + sqrt(N + ...)) has for N = 1, 2, ... the limit (1 + sqrt(1 + 4*N))/2. For N = a(n) this limit is n + 1, n = 1, 2, .... For all other numbers N, N >= 1, this limit is not a natural number. Examples: n = 1, a(1) = 2: sqrt(2 + sqrt(2 + ...)) = 1 + 1 = 2; n = 2, a(2) = 6: sqrt(6 + sqrt(6 + ...)) = 1 + 2 = 3. - Wolfdieter Lang, May 05 2006
Nonsquare integers m divisible by ceiling(sqrt(m)), except for m = 0. - Max Alekseyev, Nov 27 2006
The number of off-diagonal elements of an (n + 1) X (n + 1) matrix. - Artur Jasinski, Jan 11 2007
a(n) is equal to the number of functions f:{1, 2} -> {1, 2, ..., n + 1} such that for a fixed x in {1, 2} and a fixed y in {1, 2, ..., n + 1} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
Numbers m >= 0 such that round(sqrt(m+1)) - round(sqrt(m)) = 1. - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that ceiling(2*sqrt(m+1)) - 1 = 1 + floor(2*sqrt(m)). - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that fract(sqrt(m+1)) > 1/2 and fract(sqrt(m)) < 1/2 where fract(x) is the fractional part (fract(x) = x - floor(x), x >= 0). - Hieronymus Fischer, Aug 06 2007
X values of solutions to the equation 4*X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(2n+1). - Mohamed Bouhamida, Nov 06 2007
Nonvanishing diagonal of A132792, the infinitesimal Lah matrix, so "generalized factorials" composed of a(n) are given by the elements of the Lah matrix, unsigned A111596, e.g., a(1)*a(2)*a(3) / 3! = -A111596(4,1) = 24. - Tom Copeland, Nov 20 2007
If Y is a 2-subset of an n-set X then, for n >= 2, a(n-2) is the number of 2-subsets and 3-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) coincides with the vertex of a parabola of even width in the Redheffer matrix, directed toward zero. An integer p is prime if and only if for all integer k, the parabola y = kx - x^2 has no integer solution with 1 < x < k when y = p; a(n) corresponds to odd k. - Reikku Kulon, Nov 30 2008
The third differences of certain values of the hypergeometric function 3F2 lead to the squares of the oblong numbers i.e., 3F2([1, n + 1, n + 1], [n + 2, n + 2], z = 1) - 3*3F2([1, n + 2, n + 2], [n + 3, n + 3], z = 1) + 3*3F2([1, n + 3, n + 3], [n + 4, n + 4], z = 1) - 3F2([1, n + 4, n + 4], [n + 5, n + 5], z = 1) = (1/((n+2)*(n+3)))^2 for n = -1, 0, 1, 2, ... . See also A162990. - Johannes W. Meijer, Jul 21 2009
Generalized factorials, [a.(n!)] = a(n)*a(n-1)*...*a(0) = A010790(n), with a(0) = 1 are related to A001263. - Tom Copeland, Sep 21 2011
For n > 1, a(n) is the number of functions f:{1, 2} -> {1, ..., n + 2} where f(1) > 1 and f(2) > 2. Note that there are n + 1 possible values for f(1) and n possible values for f(2). For example, a(3) = 12 since there are 12 functions f from {1, 2} to {1, 2, 3, 4, 5} with f(1) > 1 and f(2) > 2. - Dennis P. Walsh, Dec 24 2011
a(n) gives the number of (n + 1) X (n + 1) symmetric (0, 1)-matrices containing two ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of positions of a domino in a rectangled triangular board with both legs equal to n + 1. - César Eliud Lozada, Sep 26 2012
a(n) is the number of ordered pairs (x, y) in [n+2] X [n+2] with |x-y| > 1. - Dennis P. Walsh, Nov 27 2012
a(n) is the number of injective functions from {1, 2} into {1, 2, ..., n + 1}. - Dennis P. Walsh, Nov 27 2012
a(n) is the sum of the positive differences of the partition parts of 2n + 2 into exactly two parts (see example). - Wesley Ivan Hurt, Jun 02 2013
a(n)/a(n-1) is asymptotic to e^(2/n). - Richard R. Forberg, Jun 22 2013
Number of positive roots in the root system of type D_{n + 1} (for n > 2). - Tom Edgar, Nov 05 2013
Number of roots in the root system of type A_n (for n > 0). - Tom Edgar, Nov 05 2013
From Felix P. Muga II, Mar 18 2014: (Start)
a(m), for m >= 1, are the only positive integer values t for which the Binet-de Moivre formula for the recurrence b(n) = b(n-1) + t*b(n-2) with b(0) = 0 and b(1) = 1 has a root of a square. PROOF (as suggested by Wolfdieter Lang, Mar 26 2014): The sqrt(1 + 4t) appearing in the zeros r1 and r2 of the characteristic equation is (a positive) integer for positive integer t precisely if 4t + 1 = (2m + 1)^2, that is t = a(m), m >= 1. Thus, the characteristic roots are integers: r1 = m + 1 and r2 = -m.
Let m > 1 be an integer. If b(n) = b(n-1) + a(m)*b(n-2), n >= 2, b(0) = 0, b(1) = 1, then lim_{n->oo} b(n+1)/b(n) = m + 1. (End)
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graphs (here simply K_2). - Tom Copeland, Apr 05 2014
The set of integers k for which k + sqrt(k + sqrt(k + sqrt(k + sqrt(k + ...) ... is an integer. - Leslie Koller, Apr 11 2014
a(n-1) is the largest number k such that (n*k)/(n+k) is an integer. - Derek Orr, May 22 2014
Number of ways to place a domino and a singleton on a strip of length n - 2. - Ralf Stephan, Jun 09 2014
With offset 1, this appears to give the maximal number of crossings between n nonconcentric circles of equal radius. - Felix Fröhlich, Jul 14 2014
For n > 1, the harmonic mean of the n values a(1) to a(n) is n + 1. The lowest infinite sequence of increasing positive integers whose cumulative harmonic mean is integral. - Ian Duff, Feb 01 2015
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an (n+2) X (n+2) chessboard. The lone queen can be placed in any position on the perimeter of the board. - Bob Selcoe, Feb 07 2015
With a(0) = 1, a(n-1) is the smallest positive number not in the sequence such that Sum_{i = 1..n} 1/a(i-1) has a denominator equal to n. - Derek Orr, Jun 17 2015
The positive members of this sequence are a proper subsequence of the so-called 1-happy couple products A007969. See the W. Lang link there, eq. (4), with Y_0 = 1, with a table at the end. - Wolfdieter Lang, Sep 19 2015
For n > 0, a(n) is the reciprocal of the area bounded above by y = x^(n-1) and below by y = x^n for x in the interval [0, 1]. Summing all such areas visually demonstrates the formula below giving Sum_{n >= 1} 1/a(n) = 1. - Rick L. Shepherd, Oct 26 2015
It appears that, except for a(0) = 0, this is the set of positive integers n such that x*floor(x) = n has no solution. (For example, to get 3, take x = -3/2.) - Melvin Peralta, Apr 14 2016
If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(-lambda * x), lambda > 0, then the probability that n - 1 <= x/y < n is given by 1/a(n). - Andres Cicuttin, Dec 03 2016
a(n) is equal to the sum of all possible differences between n different pairs of consecutive odd numbers (see example). - Miquel Cerda, Dec 04 2016
a(n+1) is the dimension of the space of vector fields in the plane with polynomial coefficients up to order n. - Martin Licht, Dec 04 2016
It appears that a(n) + 3 is the area of the largest possible pond in a square (A268311). - Craig Knecht, May 04 2017
Also the number of 3-cycles in the (n+3)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Also the Wiener index of the (n+2)-wheel graph. - Eric W. Weisstein, Sep 08 2017
The left edge of a Floyd's triangle that consists of even numbers: 0; 2, 4; 6, 8, 10; 12, 14, 16, 18; 20, 22, 24, 26, 28; ... giving 0, 2, 6, 12, 20, ... The right edge generates A028552. - Waldemar Puszkarz, Feb 02 2018
a(n+1) is the order of rowmotion on a poset obtained by adjoining a unique minimal (or maximal) element to a disjoint union of at least two chains of n elements. - Nick Mayers, Jun 01 2018
From Juhani Heino, Feb 05 2019: (Start)
For n > 0, 1/a(n) = n/(n+1) - (n-1)/n.
For example, 1/6 = 2/3 - 1/2; 1/12 = 3/4 - 2/3.
Corollary of this:
Take 1/2 pill.
Next day, take 1/6 pill. 1/2 + 1/6 = 2/3, so your daily average is 1/3.
Next day, take 1/12 pill. 2/3 + 1/12 = 3/4, so your daily average is 1/4.
And so on. (End)
From Bernard Schott, May 22 2020: (Start)
For an oblong number m >= 6 there exists a Euclidean division m = d*q + r with q < r < d which are in geometric progression, in this order, with a common integer ratio b. For b >= 2 and q >= 1, the Euclidean division is m = qb*(qb+1) = qb^2 * q + qb where (q, qb, qb^2) are in geometric progression.
Some examples with distinct ratios and quotients:
6 | 4 30 | 25 42 | 18
----- ----- -----
2 | 1 , 5 | 1 , 6 | 2 ,
and also:
42 | 12 420 | 100
----- -----
6 | 3 , 20 | 4 .
Some oblong numbers also satisfy a Euclidean division m = d*q + r with q < r < d that are in geometric progression in this order but with a common noninteger ratio b > 1 (see A335064). (End)
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {2, 2n}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 09 2022
a(n-2) is the maximum irregularity over all trees with n vertices. The extremal graphs are stars. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023
For n > 0, number of diagonals in a regular 2*(n+1)-gon that are not parallel to any edge (cf. A367204). - Paolo Xausa, Mar 30 2024
a(n-1) is the maximum Zagreb index over all trees with n vertices. The extremal graphs are stars. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024
For n >= 1, a(n) is the determinant of the distance matrix of a cycle graph on 2*n + 1 vertices (if the length of the cycle is even such a determinant is zero). - Miquel A. Fiol, Aug 20 2024
For n > 1, the continued fraction expansion of sqrt(16*a(n)) is [2n+1; {1, 2n-1, 1, 8n+2}]. - Magus K. Chu, Nov 20 2024
For n>=2, a(n) is the number of faces on a n+1-zone rhombic zonohedron. Each pair of a collection of great circles on a sphere intersects at two points, so there are 2*binomial(n+1,2) intersections. The dual of the implied polyhedron is a rhombic zonohedron, its faces corresponding to the intersections. - Shel Kaphan, Aug 12 2025

Examples

			a(3) = 12, since 2(3)+2 = 8 has 4 partitions with exactly two parts: (7,1), (6,2), (5,3), (4,4). Taking the positive differences of the parts in each partition and adding, we get: 6 + 4 + 2 + 0 = 12. - _Wesley Ivan Hurt_, Jun 02 2013
G.f. = 2*x + 6*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 42*x^6 + 56*x^7 + ... - _Michael Somos_, May 22 2014
From _Miquel Cerda_, Dec 04 2016: (Start)
a(1) = 2, since 45-43 = 2;
a(2) = 6, since 47-45 = 2 and 47-43 = 4, then 2+4 = 6;
a(3) = 12, since 49-47 = 2, 49-45 = 4, and 49-43 = 6, then 2+4+6 = 12. (End)
		

References

  • W. W. Berman and D. E. Smith, A Brief History of Mathematics, 1910, Open Court, page 67.
  • J. H. Conway and R. K. Guy, The Book of Numbers, 1996, p. 34.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 357, 1952.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 6, 232-233, 350 and 407, 1952.
  • H. Eves, An Introduction to the History of Mathematics, revised, Holt, Rinehart and Winston, 1964, page 72.
  • Nicomachus of Gerasa, Introduction to Arithmetic, translation by Martin Luther D'Ooge, Ann Arbor, University of Michigan Press, 1938, p. 254.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
  • C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 61-62.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 54-55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. J. Swetz, From Five Fingers to Infinity, Open Court, 1994, p. 219.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6.

Crossrefs

Partial sums of A005843 (even numbers). Twice triangular numbers (A000217).
1/beta(n, 2) in A061928.
A036689 and A036690 are subsequences. Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. - Bruno Berselli, Jun 10 2013
Row n=2 of A185651.
Cf. A007745, A169810, A213541, A005369 (characteristic function).
Cf. A281026. - Bruno Berselli, Jan 16 2017
Cf. A045943 (4-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
A335064 is a subsequence.
Second column of A003506.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).
Cf. A347213 (Dgf at s=4).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

Formula

G.f.: 2*x/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = a(n-1) + 2*n, a(0) = 0.
Sum_{n >= 1} a(n) = n*(n+1)*(n+2)/3 (cf. A007290, partial sums).
Sum_{n >= 1} 1/a(n) = 1. (Cf. Tijdeman)
Sum_{n >= 1} (-1)^(n+1)/a(n) = log(4) - 1 = A016627 - 1 [Jolley eq (235)].
1 = 1/2 + Sum_{n >= 1} 1/(2*a(n)) = 1/2 + 1/4 + 1/12 + 1/24 + 1/40 + 1/60 + ... with partial sums: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, ... - Gary W. Adamson, Jun 16 2003
a(n)*a(n+1) = a(n*(n+2)); e.g., a(3)*a(4) = 12*20 = 240 = a(3*5). - Charlie Marion, Dec 29 2003
Sum_{k = 1..n} 1/a(k) = n/(n+1). - Robert G. Wilson v, Feb 04 2005
a(n) = A046092(n)/2. - Zerinvary Lajos, Jan 08 2006
Log 2 = Sum_{n >= 0} 1/a(2n+1) = 1/2 + 1/12 + 1/30 + 1/56 + 1/90 + ... = (1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ... = Sum_{n >= 0} (-1)^n/(n+1) = A002162. - Gary W. Adamson, Jun 22 2003
a(n) = A110660(2*n). - N. J. A. Sloane, Sep 21 2005
a(n-1) = n^2 - n = A000290(n) - A000027(n) for n >= 1. a(n) is the inverse (frequency distribution) sequence of A000194(n). - Mohammad K. Azarian, Jul 26 2007
(2, 6, 12, 20, 30, ...) = binomial transform of (2, 4, 2). - Gary W. Adamson, Nov 28 2007
a(n) = 2*Sum_{i=0..n} i = 2*A000217(n). - Artur Jasinski, Jan 09 2007, and Omar E. Pol, May 14 2008
a(n) = A006503(n) - A000292(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = A061037(4*n) = (n+1/2)^2 - 1/4 = ((2n+1)^2 - 1)/4 = (A005408(n)^2 - 1)/4. - Paul Curtz, Oct 03 2008 and Klaus Purath, Jan 13 2022
a(0) = 0, a(n) = a(n-1) + 1 + floor(x), where x is the minimal positive solution to fract(sqrt(a(n-1) + 1 + x)) = 1/2. - Hieronymus Fischer, Dec 31 2008
E.g.f.: (x+2)*x*exp(x). - Geoffrey Critzer, Feb 06 2009
Product_{i >= 2} (1-1/a(i)) = -2*sin(Pi*A001622)/Pi = -2*sin(A094886)/A000796 = 2*A146481. - R. J. Mathar, Mar 12 2009, Mar 15 2009
E.g.f.: ((-x+1)*log(-x+1)+x)/x^2 also Integral_{x = 0..1} ((-x+1)*log(-x+1) + x)/x^2 = zeta(2) - 1. - Stephen Crowley, Jul 11 2009
a(A007018(n)) = A007018(n+1), i.e., A007018(n+1) = A007018(n)-th oblong numbers. - Jaroslav Krizek, Sep 13 2009
a(n) = floor((n + 1/2)^2). a(n) = A035608(n) + A004526(n+1). - Reinhard Zumkeller, Jan 27 2010
a(n) = 2*(2*A006578(n) - A035608(n)). - Reinhard Zumkeller, Feb 07 2010
a(n-1) = floor(n^5/(n^3 + n^2 + 1)). - Gary Detlefs, Feb 11 2010
For n > 1: a(n) = A173333(n+1, n-1). - Reinhard Zumkeller, Feb 19 2010
a(n) = A004202(A000217(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = A188652(2*n+1) + 1. - Reinhard Zumkeller, Apr 13 2011
For n > 0 a(n) = 1/(Integral_{x=0..Pi/2} 2*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A002061(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(0) = 0, a(n) = A005408(A034856(n)) - A005408(n-1). - Ivan N. Ianakiev, Dec 06 2012
a(n) = A005408(A000096(n)) - A005408(n). - Ivan N. Ianakiev, Dec 07 2012
a(n) = A001318(n) + A085787(n). - Omar E. Pol, Jan 11 2013
Sum_{n >= 1} 1/(a(n))^(2s) = Sum_{t = 1..2*s} binomial(4*s - t - 1, 2*s - 1) * ( (1 + (-1)^t)*zeta(t) - 1). See Arxiv:1301.6293. - R. J. Mathar, Feb 03 2013
a(n)^2 + a(n+1)^2 = 2 * a((n+1)^2), for n > 0. - Ivan N. Ianakiev, Apr 08 2013
a(n) = floor(n^2 * e^(1/n)) and a(n-1) = floor(n^2 / e^(1/n)). - Richard R. Forberg, Jun 22 2013
a(n) = 2*C(n+1, 2), for n >= 0. - Felix P. Muga II, Mar 11 2014
A005369(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
Binomial transform of [0, 2, 2, 0, 0, 0, ...]. - Alois P. Heinz, Mar 10 2015
a(2n) = A002943(n) for n >= 0, a(2n-1) = A002939(n) for n >= 1. - M. F. Hasler, Oct 11 2015
For n > 0, a(n) = 1/(Integral_{x=0..1} (x^(n-1) - x^n) dx). - Rick L. Shepherd, Oct 26 2015
a(n) = A005902(n) - A007588(n). - Peter M. Chema, Jan 09 2016
For n > 0, a(n) = lim_{m -> oo} (1/m)*1/(Sum_{i=m*n..m*(n+1)} 1/i^2), with error of ~1/m. - Richard R. Forberg, Jul 27 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Dirichlet g.f.: zeta(s-2) + zeta(s-1).
Convolution of nonnegative integers (A001477) and constant sequence (A007395).
Sum_{n >= 0} a(n)/n! = 3*exp(1). (End)
From Charlie Marion, Mar 06 2020: (Start)
a(n)*a(n+2k-1) + (n+k)^2 = ((2n+1)*k + n^2)^2.
a(n)*a(n+2k) + k^2 = ((2n+1)*k + a(n))^2. (End)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi. - Amiram Eldar, Jan 20 2021
A generalization of the Dec 29 2003 formula, a(n)*a(n+1) = a(n*(n+2)), follows. a(n)*a(n+k) = a(n*(n+k+1)) + (k-1)*n*(n+k+1). - Charlie Marion, Jan 02 2023
a(n) = A016742(n) - A049450(n). - Leo Tavares, Mar 15 2025

Extensions

Additional comments from Michael Somos
Comment and cross-reference added by Christopher Hunt Gribble, Oct 13 2009

A075195 Jablonski table T(n,k) read by antidiagonals: T(n,k) = number of necklaces with n beads of k colors.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 11, 6, 1, 6, 15, 24, 24, 8, 1, 7, 21, 45, 70, 51, 14, 1, 8, 28, 76, 165, 208, 130, 20, 1, 9, 36, 119, 336, 629, 700, 315, 36, 1, 10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1, 11, 55, 249, 1044, 3367, 7826, 11165, 8230, 2195, 108, 1
Offset: 1

Views

Author

Christian G. Bower, Sep 07 2002

Keywords

Comments

From Richard L. Ollerton, May 07 2021: (Start)
Here, as in A000031, turning over is not allowed.
(1/n) * Dirichlet convolution of phi(n) and k^n. (End)

Examples

			The array T(n,k) for n >= 1, k >= 1 begins:
  1,  2,   3,    4,     5,     6,      7, ...
  1,  3,   6,   10,    15,    21,     28, ...
  1,  4,  11,   24,    45,    76,    119, ...
  1,  6,  24,   70,   165,   336,    616, ...
  1,  8,  51,  208,   629,  1560,   3367, ...
  1, 14, 130,  700,  2635,  7826,  19684, ...
  1, 20, 315, 2344, 11165, 39996, 117655, ...
From _Indranil Ghosh_, Mar 25 2017: (Start)
Triangle formed when the array is read by antidiagonals:
   1;
   2,  1;
   3,  3,   1;
   4,  6,   4,   1;
   5, 10,  11,   6,    1;
   6, 15,  24,  24,    8,    1;
   7, 21,  45,  70,   51,   14,    1;
   8, 28,  76, 165,  208,  130,   20,   1;
   9, 36, 119, 336,  629,  700,  315,  36,  1;
  10, 45, 176, 616, 1560, 2635, 2344, 834, 60, 1;
  ... (End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 86 (2.2.23).
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 496.
  • Louis Comtet, Analyse combinatoire, Tome 2, p. 104 #17, P.U.F., 1970.

Crossrefs

Main Diagonal: A056665. A054630 and A054631 are the upper and lower triangles.

Programs

  • Mathematica
    t[n_, k_] := (1/n)*Sum[EulerPhi[d]*k^(n/d), {d, Divisors[n]}]; Table[t[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Philippe Deléham *)
  • PARI
    T(n, k) = (1/n) * sumdiv(n, d, eulerphi(d)*k^(n/d));
    for(n=1, 15, for(k=1, n, print1(T(k, n - k + 1),", ");); print();) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy.ntheory import totient, divisors
    def T(n,k): return sum(totient(d)*k**(n//d) for d in divisors(n))//n
    for n in range(1, 16):
        print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 25 2017

Formula

T(n,k) = (1/n)*Sum_{d | n} phi(d)*k^(n/d), where phi = Euler totient function A000010. - Philippe Deléham, Oct 08 2003
From Petros Hadjicostas, Feb 08 2021: (Start)
O.g.f. for column k >= 1: Sum_{n>=1} T(n,k)*x^n = -Sum_{j >= 1} (phi(j)/j) * log(1 - k*x^j).
Linear recurrence for row n >= 1: T(n,k) = Sum_{j=0..n} -binomial(j-n-1,j+1) * T(n,k-1-j) for k >= n + 2. (This recurrence is essentially due to Robert A. Russell, who contributed it in A321791.) (End)
From Richard L. Ollerton, May 07 2021: (Start)
T(n,k) = (1/n)*Sum_{i=1..n} k^gcd(n,i).
T(n,k) = (1/n)*Sum_{i=1..n} k^(n/gcd(n,i))*phi(gcd(n,i))/phi(n/gcd(n,i)).
T(n,k) = (1/n)*A185651(n,k) for n >= 1, k >= 1. (End)
Product_{n>=1} 1/(1 - x^n)^T(n,k) = Product_{n>=1} 1/(1 - k*x^n). - Seiichi Manyama, Apr 12 2025

Extensions

Additional references from Philippe Deléham, Oct 08 2003

A054602 a(n) = Sum_{d|3} phi(d)*n^(3/d).

Original entry on oeis.org

0, 3, 12, 33, 72, 135, 228, 357, 528, 747, 1020, 1353, 1752, 2223, 2772, 3405, 4128, 4947, 5868, 6897, 8040, 9303, 10692, 12213, 13872, 15675, 17628, 19737, 22008, 24447, 27060, 29853, 32832, 36003, 39372, 42945, 46728, 50727, 54948, 59397, 64080, 69003, 74172
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Every term is the product plus the sum of 3 consecutive numbers. - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Continued fraction [n,n,n] = (n^2+1)/(n^3+2n) = (n^2+1)/a(n); e.g., [7,7,7] = 50/357. - Gary W. Adamson, Jul 15 2010

Crossrefs

Programs

Formula

a(n) = n^3 + 2*n = A073133(n,3). - Henry Bottomley, Jul 16 2002
G.f.: 3*x*(x^2+1)/(x-1)^4. - Colin Barker, Dec 21 2012
a(n) = ((n-1)^3 + n^3 + (n+1)^3)/3. - David Morales Marciel, Aug 28 2015
From Bernard Schott, Nov 28 2021: (Start)
a(n) = A007531(n+1) + A008585(n) (see 1st comment).
a(n) = 3*A006527(n). (End)
From Elmo R. Oliveira, Aug 09 2025: (Start)
E.g.f.: exp(x)*x*(3 + 3*x + x^2).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A292022(n)/4. (End)

A053635 a(n) = Sum_{d|n} phi(d)*2^(n/d).

Original entry on oeis.org

0, 2, 6, 12, 24, 40, 84, 140, 288, 540, 1080, 2068, 4224, 8216, 16548, 32880, 65856, 131104, 262836, 524324, 1049760, 2097480, 4196412, 8388652, 16782048, 33554600, 67117128, 134218836, 268452240, 536870968, 1073777040, 2147483708, 4295033472, 8589938808
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2000

Keywords

Comments

Dirichlet convolution of phi(n) and 2^n. - Richard L. Ollerton, May 06 2021

Crossrefs

Column k=2 of A185651.

Programs

  • Magma
    [0] cat  [&+[EulerPhi(d)*2^(n div d): d in Divisors(n)]: n in [1..40]]; // Vincenzo Librandi, Jul 20 2019
  • Maple
    with(numtheory); A053685:=n->add( phi(n/d)*2^d, d in divisors(n)); # N. J. A. Sloane, Nov 21 2009
  • Mathematica
    a[0] = 0; a[n_] := Sum[EulerPhi[d] 2^(n/d), {d, Divisors[n]}];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Aug 30 2018 *)
  • PARI
    a(n) = if (n, sumdiv(n, d, eulerphi(d)*2^(n/d)), 0); \\ Michel Marcus, Sep 20 2017
    

Formula

a(n) = n * A000031(n).
a(n) = Sum_{k=1..n} 2^gcd(n,k). - Ilya Gutkovskiy, Apr 16 2021
a(n) = Sum_{k=1..n} 2^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 06 2021

A208535 Square array read by descending antidiagonals: T(n,k) is the number of n-bead necklaces of k colors not allowing reversal, with no adjacent beads having the same color (n, k >= 1).

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 6, 2, 1, 0, 6, 10, 8, 6, 0, 0, 7, 15, 20, 24, 6, 1, 0, 8, 21, 40, 70, 48, 14, 0, 0, 9, 28, 70, 165, 204, 130, 18, 1, 0, 10, 36, 112, 336, 624, 700, 312, 36, 0, 0, 11, 45, 168, 616, 1554, 2635, 2340, 834, 58, 1, 0, 12, 55, 240, 1044, 3360, 7826, 11160
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

For prime rows, these appear to be evaluations of Moreau's necklace polynomials at the integers with several combinatorial interpretations (see Wikipedia link). - Tom Copeland, Oct 20 2014
From Petros Hadjicostas, Nov 05 2017: (Start)
The g.f. for column k follows easily from I. Gessel's formulas for this sequence. Since S(1,k) = k-1, we have T(1,k) = k + S(1,k) - (k - 1). Thus, Sum_{n >= 1} T(n,k)*x^n = k*x + Sum_{n >= 1} (1/n)*Sum_{d|n} (k - 1)^d*phi(n/d)*x^n - Sum_{s=0} (k-1)*x^{2*s+1}. Letting m = n/d, we get that (column k g.f.) = k*x - (k - 1)*x/(1 -x^2) + Sum_{m >= 1} (phi(m)/m)*Sum_{d >= 1}((k - 1)*x^m)^d/d. But Sum_{d>=1} z^d/d = -log(1 - z), and so (column k g.f.) = k*x - (k - 1)*x/(1 - x^2) - Sum_{m >= 1} (phi(m)/m)*log(1 - (k - 1)*x^m).
The other formula for the g.f. of column k of this sequence follows from the formula Sum_{n >= 1} (phi(n)/n)*log(1 + t^n) = t/(1 - t^2), which in turn follows from the well-known series Sum_{n >= 1} phi(n)*t^n/(1 + t^n) = t*(1 + t^2)/(1 - t^2)^2.
The extra term k*x in the g.f. for column k is due to the fact that we conventionally assume that a necklace with only one bead, colored with one of the k colors available, is such that there are "no adjacent beads having the same color" (even though, strictly speaking, a single bead is adjacent to itself when we go around the circle of the necklace).
One can use the g.f. for column k to derive the so-called "Empirical for row n" formulae that are denoted by a(k) and given in the formula section below (from n = 1 to n = 7). For example, for n = 3, a(k) = a(k, x=0), where a(k, x) = (1/3!)*d^3/dx^3 (column k g.f.). Here, d^3/dx^3 stands for "third derivative w.r.t. x". If we let f(x) = x/(1 - x^2) and g(x, m) = -log(1 - (k - 1)*x^m), then f^{(3)}(0) = 6, while g^{(3)}(0,m) = 2*(k - 1)^3 for m = 1, 0 for m=2, 6*(k - 1) for m = 3, and 0 for m >= 4. Then, a(k) = (1/6)*(-6*(k - 1) + 2*(k - 1)^3 + (2/3)*6*(k - 1)) = (1/3)*k^3 - k^2 + (2/3)*k. Using this method, one can derive an "Empirical for row n" formula for a(k) for any positive integer n. (End)

Examples

			Table T(n,k) (with rows n >= 1 and columns k >= 1) starts:
  1 2  3   4    5     6      7      8       9      10       11       12       13 ...
  0 1  3   6   10    15     21     28      36      45       55       66       78 ...
  0 0  2   8   20    40     70    112     168     240      330      440      572 ...
  0 1  6  24   70   165    336    616    1044    1665     2530     3696     5226 ...
  0 0  6  48  204   624   1554   3360    6552   11808    19998    32208    49764 ...
  0 1 14 130  700  2635   7826  19684   43800   88725   166870   295526   498004 ...
  0 0 18 312 2340 11160  39990 117648  299592  683280  1428570  2783880  5118828 ...
  0 1 36 834 8230 48915 210126 720916 2097684 5381685 12501280 26796726 53750346 ...
  ...
All solutions for n = 4 and k = 3:
  1    2    1    1    1    1
  3    3    2    2    3    2
  2    2    3    1    1    1
  3    3    2    2    3    3
		

Crossrefs

Columns 3..6: A106365, A106366, A106367, A106368.
Rows 2..7: A000217(n-1), A007290, A006528(n-1), A208536, A006565(n-1), A208537.

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, Sum[ EulerPhi[n/d]*(k-1)^d, {d, Divisors[n]}]/n - If[OddQ[n], k-1, 0]]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 31 2017, after Andrew Howroyd *)
  • PARI
    T(n,k) = if(n==1, k, sumdiv(n,d,eulerphi(n/d)*(k-1)^d)/n - if(n%2, k-1));
    for(n=1, 10, for(k=1, 10, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 14 2017

Formula

Let S(n,k) = (1/n) Sum_{d|n} (k-1)^d phi(n/d), where phi is Euler's function.
Then for n even, T(n,k) = S(n,k) and for n > 1 and odd, T(n,k) = S(n,k) - (k-1), and T(1,k) = k. - Ira M. Gessel, Oct 21 2014, Sep 25 2017
Empirical for row n:
n=1: a(k) = k
n=2: a(k) = (1/2)*k^2 - (1/2)*k
n=3: a(k) = (1/3)*k^3 - k^2 + (2/3)*k
n=4: a(k) = (1/4)*k^4 - k^3 + (7/4)*k^2 - k
n=5: a(k) = (1/5)*k^5 - k^4 + 2*k^3 - 2*k^2 + (4/5)*k
n=6: a(k) = (1/6)*k^6 - k^5 + (5/2)*k^4 - (19/6)*k^3 + (7/3)*k^2 - (5/6)*k
n=7: a(k) = (1/7)*k^7 - k^6 + 3*k^5 - 5*k^4 + 5*k^3 - 3*k^2 + (6/7)*k
-----------
From Tom Copeland, Oct 20 2014: (Start)
The first three numbers in each row of the triangular array are given by T(n,k) = (1/k)*(n-k+1)! / (n-2*k+1)!.
For the table here, the first three rows, aside from initial zeros, are given by a(n,k) = (1/n)*(k + 1 - n)! / (k + 1 - 2*n)! or, with no leading zeros, by a(n,k) = (1/n)*(n+k-1)! / (k-1)!. The first three elements of each column correspond to the last three elements of a row in A238363 and the first three of A111492.
Prime rows (> 1) appear to be a(m,n) = (n^m - n)/m. See Wikipedia link. (End)
G.f. for column k: Sum_{n >= 1} T(n,k)*x^n = k*x - Sum_{n >= 1} (phi(n)/n)*((k - 1)*log(1 + x^n) + log(1 - (k - 1)*x^n)) = k*x - (k - 1)*x/(1 - x^2) - Sum_{n >= 1} (phi(n)/n)*log(1 - (k - 1)*x^n). - Petros Hadjicostas, Nov 05 2017

Extensions

Name edited by Petros Hadjicostas, Jun 24 2020

A228640 a(n) = Sum_{d|n} phi(d)*n^(n/d).

Original entry on oeis.org

0, 1, 6, 33, 280, 3145, 46956, 823585, 16781472, 387422001, 10000100440, 285311670721, 8916103479504, 302875106592409, 11112006930972780, 437893890382391745, 18446744078004651136, 827240261886336764449, 39346408075494964903956, 1978419655660313589124321
Offset: 0

Views

Author

Alois P. Heinz, Aug 28 2013

Keywords

Crossrefs

Main diagonal of A054618, A054619, A185651.

Programs

  • Magma
    [0] cat [&+[EulerPhi(d)*n^(n div d): d in Divisors(n)]:n in [1..20]]; // Marius A. Burtea, Feb 15 2020
  • Maple
    with(numtheory):
    a:= n-> add(phi(d)*n^(n/d), d=divisors(n)):
    seq(a(n), n=0..20);
  • Mathematica
    a[0] = 0; a[n_] := DivisorSum[n, EulerPhi[#]*n^(n/#)&]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 21 2017 *)
  • PARI
    a(n) = if (n, sumdiv(n, d, eulerphi(d)*n^(n/d)), 0); \\ Michel Marcus, Feb 15 2020; corrected Jun 13 2022
    
  • PARI
    a(n) = sum(k=1, n, n^gcd(k, n)); \\ Seiichi Manyama, Mar 10 2021
    
  • Python
    from sympy import totient, divisors
    def A228640(n):
        return sum(totient(d)*n**(n//d) for d in divisors(n,generator=True)) # Chai Wah Wu, Feb 15 2020
    

Formula

a(n) = Sum_{k=1..n} n^gcd(k,n) = n * A056665(n). - Seiichi Manyama, Mar 10 2021
a(n) = Sum_{k=1..n} n^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A054610 a(n) = Sum_{d|n} phi(d)*3^(n/d).

Original entry on oeis.org

0, 3, 12, 33, 96, 255, 780, 2205, 6672, 19755, 59340, 177177, 532416, 1594359, 4785228, 14349525, 43053504, 129140211, 387441756, 1162261521, 3486844320, 10460357775, 31381236876, 94143178893, 282430082832, 847288610475
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Dirichlet convolution of phi(n) and 3^n. - Richard L. Ollerton, May 07 2021

Crossrefs

Column k=3 of A185651.

Programs

  • PARI
    a(n) = sum(k=1, n, 3^gcd(n,k)); \\ Michel Marcus, Apr 16 2021

Formula

a(n) = n * A001867(n).
a(n) = 3*A034754(n). - R. J. Mathar, May 18 2014
a(n) = Sum_{k=1..n} 3^gcd(n,k). - Ilya Gutkovskiy, Apr 16 2021
a(n) = Sum_{k=1..n} 3^(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A054611 a(n) = Sum_{d|n} phi(d)*4^(n/d).

Original entry on oeis.org

0, 4, 20, 72, 280, 1040, 4200, 16408, 65840, 262296, 1049680, 4194344, 16782000, 67108912, 268451960, 1073744160, 4295033440, 17179869248, 68719747320, 274877907016, 1099512679520, 4398046544304, 17592190238920, 70368744177752
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Crossrefs

Column k=4 of A185651.
Row n=4 of A054619.
Cf. A001868.

Programs

  • Maple
    A054611:=proc(n) local k, t1; t1:=0; for k in divisors(n) do t1 := t1+phi(k)*4^(n/k); od: t1; end;
  • PARI
    a(n) = if(n==0, 0, sumdiv(n, d, eulerphi(d)*4^(n/d))); \\ Michel Marcus, Sep 19 2017

Formula

a(n) = n * A001868(n).
a(n) = Sum_{k=1..n} 4^gcd(n,k). - Ilya Gutkovskiy, Apr 16 2021

A054619 Triangle T(n,k) = Sum_{d|k} phi(d)*n^(k/d).

Original entry on oeis.org

1, 2, 6, 3, 12, 33, 4, 20, 72, 280, 5, 30, 135, 660, 3145, 6, 42, 228, 1344, 7800, 46956, 7, 56, 357, 2464, 16835, 118104, 823585, 8, 72, 528, 4176, 32800, 262800, 2097200, 16781472, 9, 90, 747, 6660, 59085, 532350, 4783023, 43053480, 387422001
Offset: 1

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Examples

			1;
2, 6;
3, 12, 33;
4, 20, 72,  280;
5, 30, 135, 660,  3145;
6, 42, 228, 1344, 7800, 46956;
...
		

Crossrefs

Cf. A054618, A054630, A054631, A185651 (transpose).
Main diagonal gives: A228640.

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(phi(d)*n^(k/d), d=divisors(k)):
    seq(seq(T(n,k), k=1..n), n=1..10);  # Alois P. Heinz, Aug 28 2013
  • Mathematica
    T[n_, k_] := Sum[EulerPhi[d]*n^(k/d), {d, Divisors[k]}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2015 *)
  • PARI
    T(n, k) = sumdiv(k, d, eulerphi(d)*n^(k/d)); \\ Michel Marcus, Feb 25 2015
Showing 1-10 of 26 results. Next