A111492
Triangle read by rows: a(n,k) = (k-1)! * C(n,k).
Original entry on oeis.org
1, 2, 1, 3, 3, 2, 4, 6, 8, 6, 5, 10, 20, 30, 24, 6, 15, 40, 90, 144, 120, 7, 21, 70, 210, 504, 840, 720, 8, 28, 112, 420, 1344, 3360, 5760, 5040, 9, 36, 168, 756, 3024, 10080, 25920, 45360, 40320, 10, 45, 240, 1260, 6048, 25200, 86400, 226800, 403200, 362880
Offset: 1
a(3,3) = 2 because (3-1)!C(3,3) = 2.
1;
2 1;
3 3 2;
4 6 8 6;
5 10 20 30 24;
6 15 40 90 144 120;
7 21 70 210 504 840 720;
8 28 112 420 1344 3360 5760 5040;
9 36 168 756 3024 10080 25920 45360 40320;
-
/* As triangle: */ [[Factorial(k-1)*Binomial(n,k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 21 2014
-
Flatten[Table[(k - 1)!Binomial[n, k], {n, 10}, {k, n}]]
A208536
Number of 5-bead necklaces of n colors not allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 6, 48, 204, 624, 1554, 3360, 6552, 11808, 19998, 32208, 49764, 74256, 107562, 151872, 209712, 283968, 377910, 495216, 639996, 816816, 1030722, 1287264, 1592520, 1953120, 2376270, 2869776, 3442068, 4102224, 4859994, 5725824, 6710880
Offset: 1
All solutions for n=3:
..1....1....1....1....1....1
..3....3....2....2....2....2
..1....2....1....3....3....1
..3....3....3....2....1....2
..2....2....2....3....3....3
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Jack Jeffries, Differentiating by prime numbers, Notices Amer. Math. Soc., 70:11 (2023), 1772-1779.
- Wikipedia, p-derivation.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
A208537
Number of 7-bead necklaces of n colors not allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 18, 312, 2340, 11160, 39990, 117648, 299592, 683280, 1428570, 2783880, 5118828, 8964072, 15059070, 24408480, 38347920, 58619808, 87460002, 127695960, 182857140, 257298360, 356336838, 486403632, 655210200, 871930800, 1147401450
Offset: 1
All solutions for n=3:
..1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1...1
..2...2...2...3...2...2...2...2...2...3...3...3...2...2...2...2...2...2
..1...1...1...1...1...1...3...3...3...2...2...1...3...1...3...1...3...1
..2...3...2...3...3...3...2...1...2...3...1...3...2...2...1...3...1...2
..3...2...1...2...1...2...1...3...3...2...3...1...3...3...3...1...2...1
..1...3...3...3...2...1...3...1...2...3...2...3...1...2...2...3...3...2
..3...2...2...2...3...3...2...3...3...2...3...2...3...3...3...2...2...3
- J. Jeffries, Differentiating by prime numbers, Notices Amer. Math. Soc., 70:11 (2023), 1772-1779.
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Wikipedia, p-derivation.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
A208544
T(n,k) = Number of n-bead necklaces of k colors allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 6, 1, 1, 0, 6, 10, 4, 6, 0, 0, 7, 15, 10, 21, 3, 1, 0, 8, 21, 20, 55, 24, 13, 0, 0, 9, 28, 35, 120, 102, 92, 9, 1, 0, 10, 36, 56, 231, 312, 430, 156, 30, 0, 0, 11, 45, 84, 406, 777, 1505, 1170, 498, 29, 1, 0, 12, 55, 120, 666, 1680, 4291, 5580, 4435
Offset: 1
All solutions for n=7, k=3:
..1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2
..3....3....1....1....3....1....3....1....3
..1....1....2....2....1....2....2....3....2
..2....3....3....3....3....1....3....1....3
..3....1....1....2....2....2....2....2....1
..2....3....3....3....3....3....3....3....3
-
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k-1)^#&]/n + If[ OddQ[n], 1-k, k*(k-1)^(n/2)/2])/2]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
-
T(n, k) = if(n==1, k, (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2);
for(n=1, 10, for(k=1, 10, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, Oct 14 2017
A327396
Triangle read by rows: T(n,k) is the number of n-bead necklace structures with beads of exactly k colors and no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 3, 5, 2, 1, 0, 0, 3, 10, 8, 2, 1, 0, 1, 7, 33, 40, 18, 3, 1, 0, 0, 11, 83, 157, 104, 28, 3, 1, 0, 1, 19, 237, 650, 615, 246, 46, 4, 1, 0, 0, 31, 640, 2522, 3318, 1857, 495, 65, 4, 1, 0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1
Offset: 1
Triangle begins:
0;
0, 1;
0, 0, 1;
0, 1, 1, 1;
0, 0, 1, 1, 1;
0, 1, 3, 5, 2, 1;
0, 0, 3, 10, 8, 2, 1;
0, 1, 7, 33, 40, 18, 3, 1;
0, 0, 11, 83, 157, 104, 28, 3, 1;
0, 1, 19, 237, 650, 615, 246, 46, 4, 1;
0, 0, 31, 640, 2522, 3318, 1857, 495, 65, 4, 1;
0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1;
...
-
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace((y-1)*exp(-x + O(x*x^(n\m))) - y + exp(-x + sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d)) ), x, x^m))/x), -n)]))}
{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Oct 09 2019
A106512
Array read by antidiagonals: a(n,k) = number of k-colorings of a circle of n nodes (n >= 1, k >= 1).
Original entry on oeis.org
0, 0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 12, 6, 2, 0, 0, 20, 24, 18, 0, 0, 0, 30, 60, 84, 30, 2, 0, 0, 42, 120, 260, 240, 66, 0, 0, 0, 56, 210, 630, 1020, 732, 126, 2, 0, 0, 72, 336, 1302, 3120, 4100, 2184, 258, 0, 0, 0, 90, 504, 2408, 7770, 15630, 16380, 6564, 510, 2, 0, 0, 110
Offset: 1
From _Andrew Howroyd_, Mar 12 2017: (Start)
Table begins:
0 0 0 0 0 0 0 0 0 ...
0 2 6 12 20 30 42 56 72 ...
0 0 6 24 60 120 210 336 504 ...
0 2 18 84 260 630 1302 2408 4104 ...
0 0 30 240 1020 3120 7770 16800 32760 ...
0 2 66 732 4100 15630 46662 117656 262152 ...
0 0 126 2184 16380 78120 279930 823536 2097144 ...
0 2 258 6564 65540 390630 1679622 5764808 16777224 ...
0 0 510 19680 262140 1953120 10077690 40353600 134217720 ...
(End)
a(4,3) = 18 because there are three choices for the first node's color (call it 1) and then two choices for the second node's color (call it 2) and then the remaining two nodes can be 12, 13, or 32. So in total there are 3*2*3 = 18 ways. a(3,4) = 4*3*2 = 24 because the three nodes must be three distinct colors.
A106368
Necklaces with n beads of 6 colors, no 2 adjacent beads the same color.
Original entry on oeis.org
6, 15, 40, 165, 624, 2635, 11160, 48915, 217040, 976887, 4438920, 20346485, 93900240, 435970995, 2034505656, 9536767665, 44878791360, 211927736135, 1003867701480, 4768372070757, 22706531350480, 108372083629275
Offset: 1
-
a[1] = 6;
a[n_] := (1/n) Sum[EulerPhi[n/d]*(5*(-1)^d + 5^d), {d, Divisors[n]}];
Array[a, 30] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
-
a(n) = if(n==1, 6, sumdiv(n, d, eulerphi(n/d)*(5*(-1)^d + 5^d))/n); \\ Andrew Howroyd, Oct 14 2017
A330618
Triangle read by rows: T(n,k) is the number of n-bead necklaces using exactly k colors with no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 1, 0, 0, 2, 0, 1, 3, 6, 0, 0, 6, 24, 24, 0, 1, 11, 80, 180, 120, 0, 0, 18, 240, 960, 1440, 720, 0, 1, 33, 696, 4410, 11340, 12600, 5040, 0, 0, 58, 1960, 18760, 73920, 137760, 120960, 40320, 0, 1, 105, 5508, 76368, 433944, 1209600, 1753920, 1270080, 362880
Offset: 1
Triangle begins:
0;
0, 1;
0, 0, 2;
0, 1, 3, 6;
0, 0, 6, 24, 24;
0, 1, 11, 80, 180, 120;
0, 0, 18, 240, 960, 1440, 720;
0, 1, 33, 696, 4410, 11340, 12600, 5040;
0, 0, 58, 1960, 18760, 73920, 137760, 120960, 40320;
...
-
\\ here U(n,k) is A208535(n,k) for n > 1.
U(n, k)={sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n - if(n%2, k-1)}
T(n,k)={sum(j=1, k, (-1)^(k-j)*binomial(k,j)*U(n,j))}
A106365
Number of necklaces with n beads of 3 colors, no 2 adjacent beads the same color.
Original entry on oeis.org
3, 3, 2, 6, 6, 14, 18, 36, 58, 108, 186, 352, 630, 1182, 2190, 4116, 7710, 14602, 27594, 52488, 99878, 190746, 364722, 699252, 1342182, 2581428, 4971066, 9587580, 18512790, 35792568, 69273666, 134219796, 260301174, 505294128, 981706830
Offset: 1
-
a[n_] := If[n==1, 3, Sum[EulerPhi[n/d]*(2*(-1)^d+2^d), {d, Divisors[n]}]/n ];
Array[a, 35] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
-
a(n) = if(n==1, 3, sumdiv(n, d, eulerphi(n/d)*(2*(-1)^d + 2^d))/n); \\ Andrew Howroyd, Oct 14 2017
A106366
Number of necklaces with n beads of 4 colors, no 2 adjacent beads the same color.
Original entry on oeis.org
4, 6, 8, 24, 48, 130, 312, 834, 2192, 5934, 16104, 44368, 122640, 341802, 956632, 2690844, 7596480, 21524542, 61171656, 174342216, 498112272, 1426419858, 4093181688, 11767920118, 33891544416, 97764131646, 282429537944
Offset: 1
-
a[n_] := If[n==1, 4, Sum[EulerPhi[n/d]*(3*(-1)^d+3^d), {d, Divisors[n]}]/n ];
Array[a, 35] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
-
a(n) = if(n==1, 4, sumdiv(n, d, eulerphi(n/d)*(3*(-1)^d + 3^d))/n); \\ Andrew Howroyd, Oct 14 2017
Showing 1-10 of 14 results.
Comments