cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330341 Triangle read by rows: T(n,k) is the number of n-bead bracelets using exactly k colors with no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 3, 3, 0, 0, 3, 12, 12, 0, 1, 10, 46, 90, 60, 0, 0, 9, 120, 480, 720, 360, 0, 1, 27, 384, 2235, 5670, 6300, 2520, 0, 0, 29, 980, 9380, 36960, 68880, 60480, 20160, 0, 1, 75, 2904, 38484, 217152, 604800, 876960, 635040, 181440
Offset: 1

Views

Author

Andrew Howroyd, Dec 20 2019

Keywords

Comments

In the case of n = 1, the single bead is considered to be cyclically adjacent to itself giving T(1,1) = 0. If compatibility with A208544 is wanted then T(1,1) should be 1.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 0,  1;
  0, 1,  3,   3;
  0, 0,  3,  12,   12;
  0, 1, 10,  46,   90,    60;
  0, 0,  9, 120,  480,   720,   360;
  0, 1, 27, 384, 2235,  5670,  6300,  2520;
  0, 0, 29, 980, 9380, 36960, 68880, 60480, 20160;
  ...
		

Crossrefs

Column 3 is A330632.
Row sums are A330621.

Programs

  • PARI
    \\ here U(n, k) is A208544(n, k) for n > 1.
    U(n, k) = (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2;
    T(n, k)={sum(j=1, k, (-1)^(k-j)*binomial(k, j)*U(n, j))}

Formula

T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A208544(n,j) for n > 1.

A093367 Number of n-bead necklaces using exactly three colors with no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 2, 3, 6, 11, 18, 33, 58, 105, 186, 349, 630, 1179, 2190, 4113, 7710, 14599, 27594, 52485, 99878, 190743, 364722, 699249, 1342182, 2581425, 4971066, 9587577, 18512790, 35792565, 69273666, 134219793, 260301174, 505294125, 981706830, 1908881897, 3714566310
Offset: 1

Views

Author

N. J. A. Sloane, Apr 28 2004

Keywords

Comments

Original name: number of periodic cycles of iterative map described by Ma and Wainwright.

Examples

			a(3) = 2 because the two necklaces 123 and 132 have no adjacent equal elements. - _Andrew Howroyd_, Dec 21 2019
		

References

  • David W. Hobill and Scott MacDonald (zeened(AT)shaw.ca), Preprint, 2004.
  • P. K.-H. Ma and J. Wainwright, A dynamical systems approach to the oscillatory singularity in Bianchi cosmologies, Relativity Today, 1994.

Crossrefs

Column 3 of A330618.

Programs

  • Mathematica
    Table[Mod[n, 2] - 3 + DivisorSum[n, EulerPhi[n/#] 2^# &]/n, {n, 37}] (* Michael De Vlieger, Dec 22 2019 *)
  • PARI
    a(n)={n%2 - 3 + sumdiv(n, d, eulerphi(n/d)*2^d)/n}  \\ Andrew Howroyd, Dec 21 2019

Formula

a(n) = A000031(n) - (5 + (-1)^n)/2. - Andrew Howroyd, Dec 21 2019

Extensions

Name changed by Andrew Howroyd, Dec 21 2019
a(1)-a(2) prepended and terms a(20) and beyond from Andrew Howroyd, Dec 21 2019

A330620 Number of length n necklaces with entries covering an initial interval of positive integers and no adjacent entries equal.

Original entry on oeis.org

0, 1, 2, 10, 54, 392, 3378, 34120, 393738, 5112406, 73756026, 1170482186, 20263782630, 380047964920, 7676106365966, 166114208828980, 3834434324386350, 94042629535109500, 2442147034719168714, 66942194906112161302, 1931543452345335094678, 58519191359163454708564
Offset: 1

Views

Author

Andrew Howroyd, Dec 20 2019

Keywords

Examples

			Case n=4: there are the following 10 necklaces:
  1212,
  1213, 1232, 1323,
  1234, 1243, 1324, 1342, 1423, 1432.
		

Crossrefs

Row sums of A330618.

Programs

  • PARI
    \\ here U(n, k) is A208535(n, k) for n > 1.
    U(n, k)={sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n - if(n%2, k-1)}
    a(n)={if(n<1, n==0, sum(j=1, n, U(n,j)*sum(k=j, n, (-1)^(k-j)*binomial(k, j))))}
Showing 1-3 of 3 results.