cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330618 Triangle read by rows: T(n,k) is the number of n-bead necklaces using exactly k colors with no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 1, 3, 6, 0, 0, 6, 24, 24, 0, 1, 11, 80, 180, 120, 0, 0, 18, 240, 960, 1440, 720, 0, 1, 33, 696, 4410, 11340, 12600, 5040, 0, 0, 58, 1960, 18760, 73920, 137760, 120960, 40320, 0, 1, 105, 5508, 76368, 433944, 1209600, 1753920, 1270080, 362880
Offset: 1

Views

Author

Andrew Howroyd, Dec 20 2019

Keywords

Comments

In the case of n = 1, the single bead is considered to be cyclically adjacent to itself giving T(1,1) = 0. If compatibility with A208535 is wanted then T(1,1) should be 1.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 0,  2;
  0, 1,  3,    6;
  0, 0,  6,   24,    24;
  0, 1, 11,   80,   180,   120;
  0, 0, 18,  240,   960,  1440,    720;
  0, 1, 33,  696,  4410, 11340,  12600,   5040;
  0, 0, 58, 1960, 18760, 73920, 137760, 120960, 40320;
  ...
		

Crossrefs

Column 3 is A093367.
Row sums are A330620.

Programs

  • PARI
    \\ here U(n,k) is A208535(n,k) for n > 1.
    U(n, k)={sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n - if(n%2, k-1)}
    T(n,k)={sum(j=1, k, (-1)^(k-j)*binomial(k,j)*U(n,j))}

Formula

T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A208535(n,j) for n > 1.
T(n,n) = (n-1)! for n > 1.

A330621 Number of length n bracelets with entries covering an initial interval of positive integers and no adjacent entries equal.

Original entry on oeis.org

0, 1, 1, 7, 27, 207, 1689, 17137, 196869, 2556856, 36878013, 585247590, 10131891315, 190024056601, 3838053182983, 83057105368627, 1917217162193175, 47021314781221603, 1221073517359584357, 33471097453271690668, 965771726172667547339, 29259595679585441629303
Offset: 1

Views

Author

Andrew Howroyd, Dec 20 2019

Keywords

Examples

			Case n=4: there are the following 7 bracelets:
  1212,
  1213, 1232, 1323,
  1234, 1243, 1324.
		

Crossrefs

Row sums of A330341.
Cf. A208544.

Programs

  • PARI
    \\ here U(n, k) is A208544(n, k) for n > 1.
    U(n, k) = (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2;
    a(n)={if(n<1, n==0, sum(j=1, n, U(n,j)*sum(k=j, n, (-1)^(k-j)*binomial(k, j))))}

A330632 Number of n-bead bracelets using exactly three colors with no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 1, 3, 3, 10, 9, 27, 29, 75, 93, 221, 315, 684, 1095, 2247, 3855, 7682, 13797, 27009, 49939, 96906, 182361, 352695, 671091, 1296855, 2485533, 4806075, 9256395, 17920857, 34636833, 67159047, 130150587, 252745365, 490853415, 954637555, 1857283155
Offset: 1

Views

Author

Andrew Howroyd, Dec 21 2019

Keywords

Crossrefs

Column 3 of A330341.
Cf. A208539.
Showing 1-3 of 3 results.