cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A330341 Triangle read by rows: T(n,k) is the number of n-bead bracelets using exactly k colors with no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 3, 3, 0, 0, 3, 12, 12, 0, 1, 10, 46, 90, 60, 0, 0, 9, 120, 480, 720, 360, 0, 1, 27, 384, 2235, 5670, 6300, 2520, 0, 0, 29, 980, 9380, 36960, 68880, 60480, 20160, 0, 1, 75, 2904, 38484, 217152, 604800, 876960, 635040, 181440
Offset: 1

Views

Author

Andrew Howroyd, Dec 20 2019

Keywords

Comments

In the case of n = 1, the single bead is considered to be cyclically adjacent to itself giving T(1,1) = 0. If compatibility with A208544 is wanted then T(1,1) should be 1.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 0,  1;
  0, 1,  3,   3;
  0, 0,  3,  12,   12;
  0, 1, 10,  46,   90,    60;
  0, 0,  9, 120,  480,   720,   360;
  0, 1, 27, 384, 2235,  5670,  6300,  2520;
  0, 0, 29, 980, 9380, 36960, 68880, 60480, 20160;
  ...
		

Crossrefs

Column 3 is A330632.
Row sums are A330621.

Programs

  • PARI
    \\ here U(n, k) is A208544(n, k) for n > 1.
    U(n, k) = (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2;
    T(n, k)={sum(j=1, k, (-1)^(k-j)*binomial(k, j)*U(n, j))}

Formula

T(n,k) = Sum_{j=1..k} (-1)^(k-j)*binomial(k,j)*A208544(n,j) for n > 1.

A208539 Number of n-bead necklaces of 3 colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

3, 3, 1, 6, 3, 13, 9, 30, 29, 78, 93, 224, 315, 687, 1095, 2250, 3855, 7685, 13797, 27012, 49939, 96909, 182361, 352698, 671091, 1296858, 2485533, 4806078, 9256395, 17920860, 34636833, 67159050, 130150587, 252745368
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			All solutions for n=4:
..1....1....1....1....1....2
..3....2....3....2....2....3
..2....3....1....1....1....2
..3....2....3....2....3....3
		

Crossrefs

Column 3 of A208544.

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 3]; Array[a, 34] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(2*n+1) = A106365(2*n+1)/2 for n > 0, a(2*n) = (A106365(2*n) + 3*2^(n-1))/2. - Andrew Howroyd, Mar 12 2017

A208538 Number of n-bead necklaces of n colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

1, 1, 1, 21, 102, 1505, 19995, 365260, 7456596, 174489813, 4545454545, 130773238871, 4115123283810, 140620807064413, 5185603185296625, 205262771447683860, 8680820740569200760, 390641235316599920745, 18637772246193096746253, 939749336469457562916217
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			All solutions for n=4:
..1....1....1....1....2....1....1....1....2....1....1....3....2....2....1....1
..2....4....3....2....3....2....3....3....4....3....2....4....3....4....2....2
..4....2....2....3....2....4....1....4....2....2....1....3....2....3....1....1
..2....4....4....2....3....3....3....3....4....3....3....4....4....4....2....4
..
..1....1....2....1....1
..3....4....3....2....4
..1....3....4....3....1
..4....4....3....4....4
		

Crossrefs

Diagonal of A208544.

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, n]; Array[a, 20] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(2n+1) = A208533(2n+1)/2 for n > 0, a(2n) = (A208533(2n) + n*(2n-1)^n)/2. - Andrew Howroyd, Mar 12 2017

Extensions

a(12)-a(20) from Andrew Howroyd, Mar 12 2017

A208540 Number of n-bead necklaces of 4 colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

4, 6, 4, 21, 24, 92, 156, 498, 1096, 3210, 8052, 22913, 61320, 173088, 478316, 1351983, 3798240, 10781954, 30585828, 87230157, 249056136, 713387076, 2046590844, 5884491500, 16945772208, 48883660146, 141214768972
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			All solutions for n=3
..1....1....2....1
..2....2....3....3
..3....4....4....4
		

Crossrefs

Column 4 of A208544.

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 4]; Array[a, 27] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(2*n+1) = A106366(2*n+1)/2 for n > 0, a(2*n) = (A106366(2*n) + 2*3^n)/2. - Andrew Howroyd, Mar 12 2017

A208541 Number of n-bead necklaces of 5 colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

5, 10, 10, 55, 102, 430, 1170, 4435, 14570, 53764, 190650, 704370, 2581110, 9608050, 35791470, 134301715, 505290270, 1909209550, 7233629130, 27489127708, 104715393910, 399827748310, 1529755308210, 5864083338770, 22517998136934, 86607770318380
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			All solutions for n=3:
..1....1....1....2....3....2....1....2....1....1
..2....2....3....3....4....4....4....3....3....2
..4....3....4....4....5....5....5....5....5....5
		

Crossrefs

Column 5 of A208544.

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 5]; Array[a, 26] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(2n+1) = A106367(2n+1)/2 for n > 0, a(2n) = (A106367(2n) + 5*4^n/2)/2. - Andrew Howroyd, Mar 12 2017

Extensions

a(21)-a(26) from Andrew Howroyd, Mar 12 2017

A208542 Number of n-bead necklaces of 6 colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

6, 15, 20, 120, 312, 1505, 5580, 25395, 108520, 493131, 2219460, 10196680, 46950120, 218102685, 1017252828, 4768969770, 22439395680, 105966797755, 501933850740, 2384200683816, 11353265675240, 54186115056825, 259150629458220, 1241763804134805
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			All solutions for n=3:
..3....2....1....2....2....3....3....1....1....1....1....2....1....2....1....1
..4....4....2....5....3....5....4....5....3....3....4....3....3....3....4....2
..6....5....5....6....6....6....5....6....5....4....5....4....6....5....6....3
..
..2....1....1....4
..4....2....2....5
..6....4....6....6
		

Crossrefs

Column 6 of A208544.

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 6]; Array[a, 24] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(2n+1) = A106368(2n+1)/2 for n > 0, a(2n) = (A106368(2n) + 3*5^n)/2. - Andrew Howroyd, Mar 12 2017

Extensions

a(19)-a(24) from Andrew Howroyd, Mar 12 2017

A208543 Number of n-bead necklaces of 7 colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

7, 21, 35, 231, 777, 4291, 19995, 107331, 559895, 3037314, 16490775, 90782986, 502334385, 2799220041, 15672833365, 88162676511, 497842924845, 2821127825971, 16035782631855, 91404068329560, 522308348593785, 2991403003191771, 17168048327252235, 98716281736491076
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			All solutions for n=3:
..1....1....5....2....1....3....1....4....1....3....3....1....1....2....3....2
..6....3....6....6....4....6....3....5....3....5....4....4....2....5....5....3
..7....6....7....7....7....7....4....6....7....7....5....6....4....6....6....4
..
..1....1....3....1....1....1....2....4....2....4....1....2....1....1....3....2
..2....2....4....2....2....4....4....6....5....5....5....4....5....3....4....3
..6....5....7....7....3....5....6....7....7....7....6....5....7....5....6....7
..
..2....2....2
..3....3....4
..6....5....7
		

Crossrefs

Column 7 of A208544.

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 7]; Array[a, 24] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Extensions

a(18)-a(24) from Andrew Howroyd, Mar 12 2017

A330621 Number of length n bracelets with entries covering an initial interval of positive integers and no adjacent entries equal.

Original entry on oeis.org

0, 1, 1, 7, 27, 207, 1689, 17137, 196869, 2556856, 36878013, 585247590, 10131891315, 190024056601, 3838053182983, 83057105368627, 1917217162193175, 47021314781221603, 1221073517359584357, 33471097453271690668, 965771726172667547339, 29259595679585441629303
Offset: 1

Views

Author

Andrew Howroyd, Dec 20 2019

Keywords

Examples

			Case n=4: there are the following 7 bracelets:
  1212,
  1213, 1232, 1323,
  1234, 1243, 1324.
		

Crossrefs

Row sums of A330341.
Cf. A208544.

Programs

  • PARI
    \\ here U(n, k) is A208544(n, k) for n > 1.
    U(n, k) = (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2;
    a(n)={if(n<1, n==0, sum(j=1, n, U(n,j)*sum(k=j, n, (-1)^(k-j)*binomial(k, j))))}

A208545 Number of 7-bead necklaces of n colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

0, 0, 9, 156, 1170, 5580, 19995, 58824, 149796, 341640, 714285, 1391940, 2559414, 4482036, 7529535, 12204240, 19173960, 29309904, 43730001, 63847980, 91428570, 128649180, 178168419, 243201816, 327605100, 435965400, 573700725, 747168084
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Row 7 of A208544.

Examples

			All solutions for n=3
..1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2
..3....3....1....1....3....1....3....1....3
..1....1....2....2....1....2....2....3....2
..2....3....3....3....3....1....3....1....3
..3....1....1....2....2....2....2....2....1
..2....3....3....3....3....3....3....3....3
		

Crossrefs

Cf. A208537.

Programs

  • PARI
    Vec(3*x^3*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4) / (1 - x)^8 + O(x^40)) \\ Colin Barker, Nov 11 2017

Formula

Empirical: a(n) = (1/14)*n^7 - (1/2)*n^6 + (3/2)*n^5 - (5/2)*n^4 + (5/2)*n^3 - (3/2)*n^2 + (3/7)*n.
From Colin Barker, Nov 11 2017: (Start)
G.f.: 3*x^3*(3 + 28*x + 58*x^2 + 28*x^3 + 3*x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Showing 1-9 of 9 results.