A330341
Triangle read by rows: T(n,k) is the number of n-bead bracelets using exactly k colors with no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 0, 1, 3, 3, 0, 0, 3, 12, 12, 0, 1, 10, 46, 90, 60, 0, 0, 9, 120, 480, 720, 360, 0, 1, 27, 384, 2235, 5670, 6300, 2520, 0, 0, 29, 980, 9380, 36960, 68880, 60480, 20160, 0, 1, 75, 2904, 38484, 217152, 604800, 876960, 635040, 181440
Offset: 1
Triangle begins:
0;
0, 1;
0, 0, 1;
0, 1, 3, 3;
0, 0, 3, 12, 12;
0, 1, 10, 46, 90, 60;
0, 0, 9, 120, 480, 720, 360;
0, 1, 27, 384, 2235, 5670, 6300, 2520;
0, 0, 29, 980, 9380, 36960, 68880, 60480, 20160;
...
-
\\ here U(n, k) is A208544(n, k) for n > 1.
U(n, k) = (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2;
T(n, k)={sum(j=1, k, (-1)^(k-j)*binomial(k, j)*U(n, j))}
A208539
Number of n-bead necklaces of 3 colors allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
3, 3, 1, 6, 3, 13, 9, 30, 29, 78, 93, 224, 315, 687, 1095, 2250, 3855, 7685, 13797, 27012, 49939, 96909, 182361, 352698, 671091, 1296858, 2485533, 4806078, 9256395, 17920860, 34636833, 67159050, 130150587, 252745368
Offset: 1
All solutions for n=4:
..1....1....1....1....1....2
..3....2....3....2....2....3
..2....3....1....1....1....2
..3....2....3....2....3....3
-
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 3]; Array[a, 34] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
A208538
Number of n-bead necklaces of n colors allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
1, 1, 1, 21, 102, 1505, 19995, 365260, 7456596, 174489813, 4545454545, 130773238871, 4115123283810, 140620807064413, 5185603185296625, 205262771447683860, 8680820740569200760, 390641235316599920745, 18637772246193096746253, 939749336469457562916217
Offset: 1
All solutions for n=4:
..1....1....1....1....2....1....1....1....2....1....1....3....2....2....1....1
..2....4....3....2....3....2....3....3....4....3....2....4....3....4....2....2
..4....2....2....3....2....4....1....4....2....2....1....3....2....3....1....1
..2....4....4....2....3....3....3....3....4....3....3....4....4....4....2....4
..
..1....1....2....1....1
..3....4....3....2....4
..1....3....4....3....1
..4....4....3....4....4
-
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, n]; Array[a, 20] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
A208540
Number of n-bead necklaces of 4 colors allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
4, 6, 4, 21, 24, 92, 156, 498, 1096, 3210, 8052, 22913, 61320, 173088, 478316, 1351983, 3798240, 10781954, 30585828, 87230157, 249056136, 713387076, 2046590844, 5884491500, 16945772208, 48883660146, 141214768972
Offset: 1
All solutions for n=3
..1....1....2....1
..2....2....3....3
..3....4....4....4
-
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 4]; Array[a, 27] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
A208541
Number of n-bead necklaces of 5 colors allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
5, 10, 10, 55, 102, 430, 1170, 4435, 14570, 53764, 190650, 704370, 2581110, 9608050, 35791470, 134301715, 505290270, 1909209550, 7233629130, 27489127708, 104715393910, 399827748310, 1529755308210, 5864083338770, 22517998136934, 86607770318380
Offset: 1
All solutions for n=3:
..1....1....1....2....3....2....1....2....1....1
..2....2....3....3....4....4....4....3....3....2
..4....3....4....4....5....5....5....5....5....5
-
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 5]; Array[a, 26] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
A208542
Number of n-bead necklaces of 6 colors allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
6, 15, 20, 120, 312, 1505, 5580, 25395, 108520, 493131, 2219460, 10196680, 46950120, 218102685, 1017252828, 4768969770, 22439395680, 105966797755, 501933850740, 2384200683816, 11353265675240, 54186115056825, 259150629458220, 1241763804134805
Offset: 1
All solutions for n=3:
..3....2....1....2....2....3....3....1....1....1....1....2....1....2....1....1
..4....4....2....5....3....5....4....5....3....3....4....3....3....3....4....2
..6....5....5....6....6....6....5....6....5....4....5....4....6....5....6....3
..
..2....1....1....4
..4....2....2....5
..6....4....6....6
-
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 6]; Array[a, 24] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
A208543
Number of n-bead necklaces of 7 colors allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
7, 21, 35, 231, 777, 4291, 19995, 107331, 559895, 3037314, 16490775, 90782986, 502334385, 2799220041, 15672833365, 88162676511, 497842924845, 2821127825971, 16035782631855, 91404068329560, 522308348593785, 2991403003191771, 17168048327252235, 98716281736491076
Offset: 1
All solutions for n=3:
..1....1....5....2....1....3....1....4....1....3....3....1....1....2....3....2
..6....3....6....6....4....6....3....5....3....5....4....4....2....5....5....3
..7....6....7....7....7....7....4....6....7....7....5....6....4....6....6....4
..
..1....1....3....1....1....1....2....4....2....4....1....2....1....1....3....2
..2....2....4....2....2....4....4....6....5....5....5....4....5....3....4....3
..6....5....7....7....3....5....6....7....7....7....6....5....7....5....6....7
..
..2....2....2
..3....3....4
..6....5....7
-
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 7]; Array[a, 24] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
A330621
Number of length n bracelets with entries covering an initial interval of positive integers and no adjacent entries equal.
Original entry on oeis.org
0, 1, 1, 7, 27, 207, 1689, 17137, 196869, 2556856, 36878013, 585247590, 10131891315, 190024056601, 3838053182983, 83057105368627, 1917217162193175, 47021314781221603, 1221073517359584357, 33471097453271690668, 965771726172667547339, 29259595679585441629303
Offset: 1
Case n=4: there are the following 7 bracelets:
1212,
1213, 1232, 1323,
1234, 1243, 1324.
-
\\ here U(n, k) is A208544(n, k) for n > 1.
U(n, k) = (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2;
a(n)={if(n<1, n==0, sum(j=1, n, U(n,j)*sum(k=j, n, (-1)^(k-j)*binomial(k, j))))}
A208545
Number of 7-bead necklaces of n colors allowing reversal, with no adjacent beads having the same color.
Original entry on oeis.org
0, 0, 9, 156, 1170, 5580, 19995, 58824, 149796, 341640, 714285, 1391940, 2559414, 4482036, 7529535, 12204240, 19173960, 29309904, 43730001, 63847980, 91428570, 128649180, 178168419, 243201816, 327605100, 435965400, 573700725, 747168084
Offset: 1
All solutions for n=3
..1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2
..3....3....1....1....3....1....3....1....3
..1....1....2....2....1....2....2....3....2
..2....3....3....3....3....1....3....1....3
..3....1....1....2....2....2....2....2....1
..2....3....3....3....3....3....3....3....3
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Showing 1-9 of 9 results.
Comments