cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208544 T(n,k) = Number of n-bead necklaces of k colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 6, 1, 1, 0, 6, 10, 4, 6, 0, 0, 7, 15, 10, 21, 3, 1, 0, 8, 21, 20, 55, 24, 13, 0, 0, 9, 28, 35, 120, 102, 92, 9, 1, 0, 10, 36, 56, 231, 312, 430, 156, 30, 0, 0, 11, 45, 84, 406, 777, 1505, 1170, 498, 29, 1, 0, 12, 55, 120, 666, 1680, 4291, 5580, 4435
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Table starts
.1.2..3...4....5.....6......7......8.......9......10......11.......12.......13
.0.1..3...6...10....15.....21.....28......36......45......55.......66.......78
.0.0..1...4...10....20.....35.....56......84.....120.....165......220......286
.0.1..6..21...55...120....231....406.....666....1035....1540.....2211.....3081
.0.0..3..24..102...312....777...1680....3276....5904....9999....16104....24882
.0.1.13..92..430..1505...4291..10528...23052...46185...86185...151756...254618
.0.0..9.156.1170..5580..19995..58824..149796..341640..714285..1391940..2559414
.0.1.30.498.4435.25395.107331.365260.1058058.2707245.6278140.13442286.26942565

Examples

			All solutions for n=7, k=3:
..1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2
..3....3....1....1....3....1....3....1....3
..1....1....2....2....1....2....2....3....2
..2....3....3....3....3....1....3....1....3
..3....1....1....2....2....2....2....2....1
..2....3....3....3....3....3....3....3....3
		

Crossrefs

Main diagonal is A208538.
Columns 3..7 are A208539, A208540, A208541, A208542, A208543.
Row 2 is A000217(n-1).
Row 3 is A000292(n-2).
Row 4 is A002817(n-1).
Row 5 is A164938(n-1).
Row 6 is A027670(n-1).

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k-1)^#&]/n + If[ OddQ[n], 1-k, k*(k-1)^(n/2)/2])/2]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = if(n==1, k, (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2);
    for(n=1, 10, for(k=1, 10, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, Oct 14 2017

Formula

T(2n+1,k) = A208535(2n+1,k)/2 for n > 0, T(2n,k) = (A208535(2n,k) + (k*(k-1)^n)/2)/2. - Andrew Howroyd, Mar 12 2017
Empirical for row n:
n=1: a(k) = k
n=2: a(k) = (1/2)*k^2 - (1/2)*k
n=3: a(k) = (1/6)*k^3 - (1/2)*k^2 + (1/3)*k
n=4: a(k) = (1/8)*k^4 - (1/4)*k^3 + (3/8)*k^2 - (1/4)*k
n=5: a(k) = (1/10)*k^5 - (1/2)*k^4 + k^3 - k^2 + (2/5)*k
n=6: a(k) = (1/12)*k^6 - (1/2)*k^5 + (3/2)*k^4 - (7/3)*k^3 + (23/12)*k^2 - (2/3)*k
n=7: a(k) = (1/14)*k^7 - (1/2)*k^6 + (3/2)*k^5 - (5/2)*k^4 + (5/2)*k^3 - (3/2)*k^2 + (3/7)*k
Showing 1-1 of 1 results.