A054635 Champernowne sequence: write n in base 3 and juxtapose.
0, 1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1
Offset: 0
Links
- Reinhard Zumkeller, Rows n = 0..1000 of triangle, flattened
- Eric Weisstein's World of Mathematics, Ternary Champernowne Constant
- Wikipedia, Ternary numeral system
Crossrefs
Cf. A054637 (partial sums).
Programs
-
Haskell
a054635 n k = a054635_tabf !! n !! k a054635_row n = a054635_tabf !! n a054635_tabf = map reverse a030341_tabf a054635_list = concat a054635_tabf -- Reinhard Zumkeller, Feb 21 2013
-
Magma
[0]cat &cat[Reverse(IntegerToSequence(n,3)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
-
Mathematica
almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 3] &, 105, 0] (* Robert G. Wilson v, Jun 29 2014 *) First[RealDigits[ChampernowneNumber[3], 3, 100, 0]] (* Paolo Xausa, Jun 19 2024 *)
-
Python
from sympy.ntheory.digits import digits def agen(limit): for n in range(limit): yield from digits(n, 3)[1:] print([an for an in agen(35)]) # Michael S. Branicky, Sep 01 2021
Comments