cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054635 Champernowne sequence: write n in base 3 and juxtapose.

Original entry on oeis.org

0, 1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Essentially the same as A003137. - R. J. Mathar, Aug 29 2009
An irregular table in which the n-th row lists the base-3 digits of n. - Jason Kimberley, Dec 07 2012
The base-3 Champernowne constant (A077771): it is normal in base 3. - Jason Kimberley, Dec 07 2012

Crossrefs

Cf. A054637 (partial sums).
Cf. A081604 (row lengths), A053735 (row sums), A030341 (rows reversed), A007089, A077771.
Table in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and this sequence (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012

Programs

  • Haskell
    a054635 n k = a054635_tabf !! n !! k
    a054635_row n = a054635_tabf !! n
    a054635_tabf = map reverse a030341_tabf
    a054635_list = concat a054635_tabf
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,3)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 3] &, 105, 0] (* Robert G. Wilson v, Jun 29 2014 *)
    First[RealDigits[ChampernowneNumber[3], 3, 100, 0]] (* Paolo Xausa, Jun 19 2024 *)
  • Python
    from sympy.ntheory.digits import digits
    def agen(limit):
        for n in range(limit):
            yield from digits(n, 3)[1:]
    print([an for an in agen(35)]) # Michael S. Branicky, Sep 01 2021