cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110540 Invertible triangle: T(n,k) = number of k-ary Lyndon words of length n-k+1 with trace 1 modulo k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 3, 2, 1, 0, 3, 6, 5, 2, 1, 0, 5, 16, 16, 8, 3, 1, 0, 9, 39, 51, 30, 12, 3, 1, 0, 16, 104, 170, 125, 54, 16, 4, 1, 0, 28, 270, 585, 516, 259, 84, 21, 4, 1, 0, 51, 729, 2048, 2232, 1296, 480, 128, 27, 5, 1, 0, 93, 1960, 7280, 9750, 6665, 2792, 819, 180, 33, 5, 1
Offset: 1

Views

Author

Paul Barry, Jul 25 2005

Keywords

Comments

An invertible number triangle related to Lyndon words of trace 1.

Examples

			Rows begin
  1;
  0,  1;
  0,  1,   1;
  0,  1,   1,    1;
  0,  2,   3,    2,    1;
  0,  3,   6,    5,    2,    1;
  0,  5,  16,   16,    8,    3,   1;
  0,  9,  39,   51,   30,   12,   3,   1;
  0, 16, 104,  170,  125,   54,  16,   4,  1;
  0, 28, 270,  585,  516,  259,  84,  21,  4, 1;
  0, 51, 729, 2048, 2232, 1296, 480, 128, 27, 5, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:=Sum[Boole[GCD[d, k] == 1]  MoebiusMu[d] k^((n - k + 1)/d), {d, Divisors[n - k + 1]}] /(k(n - k + 1)); Flatten[Table[T[n, k], {n, 12}, {k, n}]] (* Indranil Ghosh, Mar 27 2017 *)
  • PARI
    for(n=1, 11, for(k=1, n, print1( sum(d=1,n-k+1, if(Mod(n-k+1, d)==0 && gcd(d, k)==1, moebius(d)*k^((n-k+1)/d), 0)/(k*(n-k+1)) ),", ");); print();) \\ Andrew Howroyd, Mar 26 2017

Formula

T(n, k) = (Sum_{d | n-k+1, gcd(d, k)=1} mu(d)*k^((n-k+1)/d))/(k*(n-k+1)).

Extensions

Name clarified by Andrew Howroyd, Mar 26 2017

A054700 Number of 6-ary Lyndon words with trace 3 mod 6.

Original entry on oeis.org

1, 3, 11, 54, 259, 1293, 6665, 34992, 186612, 1007769, 5496925, 30233034, 167444795, 932906715, 5224277345, 29386561536, 165947641615, 940369967856, 5345260877285, 30467987000514, 174102782853475, 997134120017175
Offset: 1

Views

Author

James Sellers, Apr 19 2000

Keywords

Crossrefs

Showing 1-2 of 2 results.