A054718 Number of ternary sequences with primitive period n.
1, 3, 6, 24, 72, 240, 696, 2184, 6480, 19656, 58800, 177144, 530640, 1594320, 4780776, 14348640, 43040160, 129140160, 387400104, 1162261464, 3486725280, 10460350992, 31380882456, 94143178824, 282428998560, 847288609200, 2541864234000, 7625597465304
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..2095 (terms 0..650 from Alois P. Heinz)
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Programs
-
Maple
with(numtheory): a:= n-> `if`(n=0, 1, add(mobius(d)*3^(n/d), d=divisors(n))): seq(a(n), n=0..30); # Alois P. Heinz, Oct 21 2012
-
Mathematica
a[0] = 1; a[n_] := Sum[MoebiusMu[d]*3^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)
-
PARI
a(n) = if(n==0,1,sumdiv(n,d, moebius(d) * 3^(n/d) )); \\ Joerg Arndt, Apr 14 2013
Formula
a(n) = Sum_{d|n} mu(d)*3^(n/d).
a(0) = 1, a(n) = n * A027376(n).
a(n) = 3 * A034741(n).
G.f.: 1 + 3 * Sum_{k>=1} mu(k) * x^k / (1 - 3*x^k). - Ilya Gutkovskiy, Apr 14 2021
Comments