A054730 Odd n such that genus of modular curve X_0(N) is never equal to n.
49267, 74135, 94091, 96463, 102727, 107643, 118639, 138483, 145125, 181703, 182675, 208523, 221943, 237387, 240735, 245263, 255783, 267765, 269627, 272583, 277943, 280647, 283887, 286815, 309663, 313447, 322435, 326355, 336675, 347823, 352719
Offset: 1
Keywords
References
- J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.
Links
- Gheorghe Coserea, Table of n, a(n) for n = 1..4329
- J. A. Csirik, M. Zieve, and J. Wetherell, On the genera of X0(N), arXiv:math/0006096 [math.NT], 2000.
Programs
-
PARI
A000089(n) = { if (n%4 == 0 || n%4 == 3, return(0)); if (n%2 == 0, n \= 2); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2)); }; A000086(n) = { if (n%9 == 0 || n%3 == 2, return(0)); if (n%3 == 0, n \= 3); my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2)); }; A001615(n) = { my(f = factor(n), fsz = matsize(f)[1], g = prod(k=1, fsz, (f[k, 1]+1)), h = prod(k=1, fsz, f[k, 1])); return((n*g)\h); }; A001616(n) = { my(f = factor(n), fsz = matsize(f)[1]); prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2)); }; A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2; scan(n) = { my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g); for (k = 1, bnd, g = A001617(k); if (g <= n && inv[g+1] == -1, inv[g+1] = k)); select(x->(x%2==1), apply(x->(x-1), Vec(select(x->x==-1, inv, 1)))); }; scan(400*1000)
Extensions
More terms from Gheorghe Coserea, May 23 2016
Offset corrected by Gheorghe Coserea, May 23 2016
Comments